Advertisement

Climate Dynamics

, Volume 40, Issue 1–2, pp 327–340 | Cite as

Impact of climate warming on upper layer of the Bering Sea

  • Hyun-Chul Lee
  • Thomas L. Delworth
  • Anthony Rosati
  • Rong Zhang
  • Whit G. Anderson
  • Fanrong Zeng
  • Charles A. Stock
  • Anand Gnanadesikan
  • Keith W. Dixon
  • Stephen M. Griffies
Article

Abstract

The impact of climate warming on the upper layer of the Bering Sea is investigated by using a high-resolution coupled global climate model. The model is forced by increasing atmospheric CO2 at a rate of 1% per year until CO2 reaches double its initial value (after 70 years), after which it is held constant. In response to this forcing, the upper layer of the Bering Sea warms by about 2°C in the southeastern shelf and by a little more than 1°C in the western basin. The wintertime ventilation to the permanent thermocline weakens in the western Bering Sea. After CO2 doubling, the southeastern shelf of the Bering Sea becomes almost ice-free in March, and the stratification of the upper layer strengthens in May and June. Changes of physical condition due to the climate warming would impact the pre-condition of spring bio-productivity in the southeastern shelf.

Keywords

Bering Sea Climate warming High resolution coupled global climate model 

Notes

Acknowledgments

We thank Ron Pacanowski, Ronald Stouffer, Michael Winton and Olga Sergienko for their helpful comments and suggestions. The satellite sea-ice concentration data is downloaded from the National Snow and Ice Data Center, and we appreciate for their help. We also wish to thank the second reviewer for many constructive comments.

References

  1. Aguilar-Islas AM, Rember RD, Mordy CW, Wu J (2008) Sea ice-derived dissolved iron and its potential influence on the spring algal bloom in the Bering Sea. Geophys Res Lett 35:L24601CrossRefGoogle Scholar
  2. Cavalieri D, Parkinson C, Gloersen P, Zwally HJ (1996) Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I passive microwave data, January 1981–December 2007. National Snow and Ice Data Center, Boulder, CO, USA. Data set accessed at https://nsidc.org/data/nsidc-0051.html (updated 2008)
  3. Clement JL, Maslowski W, Cooper LW, Grebmerier JM, Walczowski W (2005) Ocean circulation and exchanges through the northern Bering Sea—1979–2001 model results. Deep Sea Res II 52:3509–3540CrossRefGoogle Scholar
  4. Danielson S, Eisner L, Weingartner T, Aagaard K (2011) Thermal and haline variability over the central Bering Sea shelf: seasonal and interannual perspectives. Cont Shelf Res. doi: 10.1016/j.csr.2010.12.010 Google Scholar
  5. Delworth TL et al (2012) Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J Clim. doi: 10.1175/JCLI-D-11-00316.1 Google Scholar
  6. Di Lorenzo E et al (2008) North Pacific gyre oscillation links ocean climate and ecosystem change. Geophys Res Lett 35:L08607CrossRefGoogle Scholar
  7. Farneti R, Delworth TL, Rosati AJ, Griffies SM, Zeng F (2010) The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J Phys Oceanogr 40:1539–1557CrossRefGoogle Scholar
  8. Foreman MGG, Cummins PF, Cherniawsky JY, Stabeno P (2006) Tidal energy in the Bering Sea. J Mar Res 64:797–818CrossRefGoogle Scholar
  9. Grebmeier JM, Overland JE, Moore SE, Farley EV, Carmack EC, Cooper LW, Frey KE, Helle JH, McLaughlin FA, McNutt SL (2006) A major ecosystem shift in the northern Bering Sea. Science 311:1461–1464CrossRefGoogle Scholar
  10. Griffies SM (2009) Elements of MOM4p1. NOAA/Geophysical Fluid Dynamics Laboratory, PrincetonGoogle Scholar
  11. Griffies SM, Hallberg RW (2000) Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon Weather Rev 128:2935–2946CrossRefGoogle Scholar
  12. Hanawa K, Talley LD (2001) Mode waters. In: Siedler G et al (eds) Ocean circulation and climate: observing and modeling the global ocean. Academic Press, San Diego, pp 373–386CrossRefGoogle Scholar
  13. Hermann AJ, Stabeno PJ, Haidvogel DB, Musgrave DL (2002) A regional tidal/subtidal circulation model of the southeastern Bering Sea: development, sensitivity analysis and hindcasting. Deep Sea Res II 49:5945–9567CrossRefGoogle Scholar
  14. Highsmith RC, Coyle KO (1990) High productivity of northern Bering Sea benthic amphipods. Nature 344:862–864CrossRefGoogle Scholar
  15. Holland MM, Bitz CM (2003) Polar amplification of climate change in coupled models. Clim Dyn 21:221–232CrossRefGoogle Scholar
  16. Hu H, Wang J (2010) Modeling effects of tidal and wave mixing on circulation and thermohaline structures in the Bering Sea. J Geophys Res 115:C01006CrossRefGoogle Scholar
  17. Hunt GL Jr, Stabeno P, Walters G, Sinclair E, Brodeur RD, Napp JM, Bond NA (2002) Climate change and control of the southeastern Bering Sea pelagic ecosystem. Deep Sea Res 49:5821–5853CrossRefGoogle Scholar
  18. Hunt GL Jr, Stabeno PJ, Strom S, Napp JM (2008) Patterns of spatial and temporal variation in the marine ecosystem of the southeastern Bering Sea, with special reference to the Pribilof Domain. Deep Sea Res 55:1919–1944CrossRefGoogle Scholar
  19. Hunt GL Jr et al (2011) Climate impacts on eastern Bering Sea foodwebs: a synthesis of new data and an assessment of the oscillation control hypothesis. ICE J Mar Sci 68(8):1230–1243. doi: 10.1093/icesjms/frs036 CrossRefGoogle Scholar
  20. IPCC (2007) Climate change 2007: the physical science basis. Intergovernmental Panel on Climate Change, GenevaGoogle Scholar
  21. Kinder TH, Coachman LK, Galt JA (1975) The Bering slope current system. J Phys Oceanogr 5:231–244CrossRefGoogle Scholar
  22. Kinder TH, Schumacher JD, Hansen DV (1980) Observation of a baroclinic eddy: an example of mesoscale variability in the Bering Sea. J Phys Oceanogr 10:1228–1245CrossRefGoogle Scholar
  23. Lee HC, Rosati A, Spelman MJ (2006) Barotropic tidal mixing effects in a coupled climate model: oceanic conditions in the North Atlantic. Ocean Model 11:467–477CrossRefGoogle Scholar
  24. Lin SJ (2004) A “vertical Lagrangian” finite-volume dynamical core for global models. Mon Weather Rev 132:2293–2307CrossRefGoogle Scholar
  25. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteor Soc 78:1069–1079CrossRefGoogle Scholar
  26. Marshall JC, Nurser AJG, Williams RG (1993) Inferring the subduction rate and period over the North Atlantic. J Phys Oceanogr 23:1315–1329CrossRefGoogle Scholar
  27. Meehl GA et al (2007) Global climate projections. In: Solomon SD et al (eds) Climate change 2007: the physical science basis. In: Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University, Cambridge, pp 747–846Google Scholar
  28. Miura T, Suga T, Hanawa K (2002) Winter mixed layer and formation of dichothermal water in the Bering Sea. J Oceanogr 58:815–823CrossRefGoogle Scholar
  29. Mizobata K, Saitoh S, Wang J (2008) Interannual variability of summer biochemical enhancement in relation to mesoscale eddies at the shelf break in the vicinity of the Pribilof Islands, Bering Sea. Deep Sea Res 55:1717–1728CrossRefGoogle Scholar
  30. Mueter FJ, Litzow MA (2008) Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecol Appl 18:309–320CrossRefGoogle Scholar
  31. Overland JE, Stabeno PJ (2004) Is the climate of the Bering Sea warming and affecting the ecosystem? Eos Trans Am Geophys Univ 85:309–316CrossRefGoogle Scholar
  32. Overland JE, Adams JM, Bond NA (1999) Decadal variability in the Aleutian low and its relation to high latitude circulation. J Clim 12:1542–1548CrossRefGoogle Scholar
  33. Roach AT, Aagaard K, Pease CH, Salo SA, Weingatner T, Pavlov TV, Kulakov M (1995) Direct measurements of transport and water properties through the Bering Strait. J Geophys Res 100:18433–18457CrossRefGoogle Scholar
  34. Shevliakova E, Pacala SW, Malyshev S, Hurtt GC, Milly PCD, Caspersen JD, Sentman LT, Fisk JP, Wirth C, Crevoisier C (2009) Carbon cycling under 300 years of land use change: importance of the secondary vegetation sink. Glob Biogeochem Cycles 23:GB2022CrossRefGoogle Scholar
  35. Shimada K, Carmack EC, Hatakeyama K, Kakizawa T (2002) Varieties of shallow temperature maximum waters in the western Canadian basin of Arctic Ocean. Geophys Res Lett 28:3441–3444CrossRefGoogle Scholar
  36. Stabeno PJ, Schumacher DJ, Ohtani K (1999) The physical oceanography of the Bering Sea. In: Loughlin TR, Ohtani K (eds) Dynamics of Bering Sea. University of Alaska Fairbanks, Fairbanks, pp 1–28Google Scholar
  37. Stabeno PJ, Bond NA, Kachel NB, Salo SA, Schumacher JD (2001) On the temporal variability of the physical environment over the south-eastern Bering Sea. Fish Oceanogr 10:81–98CrossRefGoogle Scholar
  38. Stabeno PJ, Kachel N, Mordy C, Righi D, Salo S (2008) An examination of the physical variability around the Pribilof Islandsin 2004. Deep Sea Res 55:1701–1716CrossRefGoogle Scholar
  39. Steele M, Morison J, Ermold W, Rigor I, Ortmeyer M (2004) Circulation of summer Pacific halocline water in the Arctic Ocean. J Geophys Res 109:C02027CrossRefGoogle Scholar
  40. Stroeve JC, Serreze MC, Fetterer F, Arbetter T, Meier W, Maslanik J, Knowles K (2005) Tracking the Arctic’s shrinking ice cover: another extreme September minimum in 2004. Geophys Res Lett 32:L04501CrossRefGoogle Scholar
  41. Winton M (2000) A reformulated three-layer sea ice model. J Atmos Ocean Technol 17:525–531CrossRefGoogle Scholar
  42. Winton M (2006) Amplified Arctic climate change: what does surface albedo feedback have to do with it? Geophys Res Lett 33:L03701CrossRefGoogle Scholar
  43. Woodgate RA, Aagaard K, Weingatner TJ (2006) Interannual changes in the Bering Strait fluxes of volume, heat and freshwater between 1991 and 2004. Geophys Res Lett 33:L15609CrossRefGoogle Scholar
  44. Zahariev K, Garrett C (1997) An apparent surface buoyancy flux associated with nonlinearity of the equation of state. J Phys Oceanogr 27:362–368CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Hyun-Chul Lee
    • 1
    • 3
  • Thomas L. Delworth
    • 1
  • Anthony Rosati
    • 1
  • Rong Zhang
    • 1
  • Whit G. Anderson
    • 1
  • Fanrong Zeng
    • 1
  • Charles A. Stock
    • 1
  • Anand Gnanadesikan
    • 2
  • Keith W. Dixon
    • 1
  • Stephen M. Griffies
    • 1
  1. 1.Geophysical Fluid Dynamics LaboratoryPrincetonUSA
  2. 2.Johns Hopkins UniversityBaltimoreUSA
  3. 3.High Performance Technology Group of DRCRestonUSA

Personalised recommendations