Climate Dynamics

, Volume 39, Issue 7–8, pp 1951–1968 | Cite as

Global response to solar radiation absorbed by phytoplankton in a coupled climate model

  • Lavinia PataraEmail author
  • Marcello Vichi
  • Simona Masina
  • Pier Giuseppe Fogli
  • Elisa Manzini


The global climate response to solar radiation absorbed by phytoplankton is investigated by performing multi-century simulations with a coupled ocean–atmosphere-biogeochemistry model. The absorption of solar radiation by phytoplankton increases radiative heating in the near-surface ocean and raises sea surface temperature (SST) by overall ~0.5°C. The resulting increase in evaporation enhances specific atmospheric humidity by 2–5%, thereby increasing the Earth’s greenhouse effect and the atmospheric temperatures. The Hadley Cell exhibits a weakening and poleward expansion, therefore reducing cloudiness at subtropical-middle latitudes and increasing it at tropical latitudes except near the Equator. Higher SST at polar latitudes reduces sea ice cover and albedo, thereby increasing the high-latitude ocean absorption of solar radiation. Changes in the atmospheric baroclinicity cause a poleward intensification of mid-latitude westerly winds in both hemispheres. As a result, the North Atlantic Ocean meridional overturning circulation extends more northward, and the equatorward Ekman transport is enhanced in the Southern Ocean. The combination of local and dynamical processes decreases upper-ocean heat content in the Tropics and in the subpolar Southern Ocean, and increases it at middle latitudes. This study highlights the relevance of coupled ocean–atmosphere processes in the global climate response to phytoplankton solar absorption. Given that simulated impacts of phytoplankton on physical climate are within the range of natural climate variability, this study suggests the importance of phytoplankton as an internal constituent of the Earth’s climate and its potential role in participating in its long-term climate adjustments.


Coupled climate model Bio-physical interactions Solar radiation Climate Marine biogeochemical model Phytoplankton radiative heating Ocean circulation 



This study was funded by Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC). The authors thank the European Centre for Medium-Range Weather Forecasts (ECMWF) for making available ERA-40 wind stress data, the US National Aeronautics and Space Administration (NASA) for providing SeaWiFS chlorophyll satellite products, and the Hadley Centre for the sea surface temperature data available on the website The authors thank E. Schneider for his comments on a previous version of the manuscript. Two anonymous reviewers are also gratefully acknowledged.


  1. Anderson WG, Gnanadesikan A, Hallberg R, Dunne J, Samuels BL (2007) Impact of ocean color on the maintenance of the Pacific Cold Tongue. Geophys Res Lett. doi: 10.1029/2007GL030100 Google Scholar
  2. Anderson W, Gnanadesikan A, Wittenberg A (2009) Regional impacts of ocean color on tropical Pacific variability. Ocean Science 5(3):313–327CrossRefGoogle Scholar
  3. Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444(7120):752–755CrossRefGoogle Scholar
  4. Blanke B, Delecluse P (1993) Variability of the Tropical Atlantic Ocean simulated by a general circulation model with 2 different mixed-layer physics. J Phys Oceanogr 23(7):1363–1388CrossRefGoogle Scholar
  5. Boyce DG, Lewis MR, Worm B (2010) Global phytoplankton decline over the past century. Nature 466(7306):591–596CrossRefGoogle Scholar
  6. Conkright M, Garcia H, O’Brien T, Locarnini R, Boyer T, Stephens C, Antonov J (2002) World Ocean Atlas 2001, vol 4: Nutrients. In: NOAA Atlas NESDIS 52, US Government Printing Office, Washington DCGoogle Scholar
  7. Eden C, Willebrand J (2001) Mechanisms of interannual to decadal variability in the North Atlantic circulation. J Climate 14:2266–2280CrossRefGoogle Scholar
  8. Falkowski PG, Oliver MJ (2007) Mix and match: how climate selects phytoplankton. Nat Rev Microbiol 5:813–819. doi: 10.1038/nrmicro1751 CrossRefGoogle Scholar
  9. Fogli PG, Manzini E, Vichi M, Alessandri A, Patara L, Gualdi S, Scoccimarro E, Masina S, Navarra A (2009) INGV-CMCC Carbon (ICC): A Carbon Cycle Earth System Model. CMCC Research Paper 61.
  10. Fortuin JPF, Kelder H (1998) An ozone climatology based on ozonesonde and satellite measurements. J Geophys Res 103(D24):31709–31734. doi: 10.1029/1998JD200008 CrossRefGoogle Scholar
  11. Fyfe JC, Saenko OA (2006) Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys Res Lett 33:L06701. doi: 10.1029/2005GL025332 CrossRefGoogle Scholar
  12. Garcia HE, Locarnini RA, Boyer TP, Antonov JI, Zweng MM, Baranova OK, Johnson DR (2010) World Ocean Atlas 2009, Volume 4: Nutrients (phosphate, nitrate, silicate). In: Levitus S (ed) NOAA Atlas NESDIS 71, U.S. Government Printing Office, Washington, DCGoogle Scholar
  13. Geider RJ, MacIntyre HL, Kana TM (1997) Dynamic model of phytoplankton growth and acclimation: Responses of the balanced growth rate and the chlorophyll a : carbon ratio to light, nutrient-limitation and temperature. Mar Ecol Progr Ser 148(1–3):187–200CrossRefGoogle Scholar
  14. Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20(1):150–155CrossRefGoogle Scholar
  15. Gnanadesikan A, Anderson WG (2009) Ocean Water Clarity and the Ocean General Circulation in a Coupled Climate Model. J Phys Oceanogr 39(2):314–332CrossRefGoogle Scholar
  16. Gnanadesikan A, Emanuel K, Vecchi GA, Anderson WG, Hallberg R (2010) How ocean color can steer Pacific tropical cyclones. Geophys Res Lett 37:L18802. doi: 10.1029/2010GL044514 CrossRefGoogle Scholar
  17. Held IM, Soden BJ (2000) Water vapor feedback and global warming. Annual Review of Energy and the Environment 25:441–475CrossRefGoogle Scholar
  18. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686–5699. doi: 10.1175/JCLI3990.1 CrossRefGoogle Scholar
  19. Jerlov NG (1968) Optical oceanography. American Elsevier Publ. Co., Inc., New YorkGoogle Scholar
  20. Jochum M, Yeager S, Lindsay K, Moore K, Murtugudde R (2010) Quantification of the Feedback between Phytoplankton and ENSO in the Community Climate System Model. J Climate 23(11):2916–2925CrossRefGoogle Scholar
  21. Johns TC, Royer J-F, Höschel I, Huebener H, Roeckner E, Manzini E, May W, Dufresne J-L, Otterå OH, van Vuuren DP, Salas y Melia D, Giorgetta M, Denvil S, Yang S, Fogli PG, Körper J, Tjiputra JF, Stehfest E, Hewitt CD (2011) Climate change under aggressive mitigation: the ENSEMBLES multi-model experiment. Clim Dyn 37(9–10):1975–2003. doi: 10.1007/s00382-011-1005-5 CrossRefGoogle Scholar
  22. Key RM, Kozyr A, Sabine CL, Lee K, Wanninkhof R, Bullister JL, Feely RA, Millero FJ, Mordy C, Peng TH (2004) A global ocean carbon climatology: Results from global data analysis project (GLODAP). Glob Biogeochem Cyc 18:GB4031. doi: 10.1029/2004GB002247 CrossRefGoogle Scholar
  23. Knutson TR, Manabe S (1995) Time-mean response over the Tropical Pacific to increased CO2 in a coupled ocean-atmosphere model. J Clim 8(9):2181–2199. doi: 10.1175/1520-0442(1995)008<2181:TMROTT>2.0.CO;2 CrossRefGoogle Scholar
  24. Lengaigne M, Menkes C, Aumont O, Gorgues T, Bopp L, Andre JM, Madec G (2007) Influence of the oceanic biology on the tropical Pacific climate in a coupled general circulation model. Clim Dyn 28(5):503–516CrossRefGoogle Scholar
  25. Lengaigne M, Madec G, Bopp L, Menkes C, Aumont O, Cadule P (2009) Bio-physical feedbacks in the Arctic Ocean using an Earth System Model. Geophys Res Lett 36:L21602. doi: 10.1029/2009GL040145 CrossRefGoogle Scholar
  26. Levitus S, Boyer T, Conkright M, O’Brien T, Antonov J, Stephens C, Stathoplos L, Johnson D, Gelfeld R (1998) World Ocean Database 1998: vol. 1: Introduction. In: NOAA Atlas NESDIS 18, p 346, U.S. Gov. Printing Office, Washington, DCGoogle Scholar
  27. Löptien U, Eden C, Timmermann A, Dietze H (2009) Effects of biologically induced differential heating in an eddy-permitting coupled ocean-ecosystem model. J Geophys Res Oceans 114:C06011. doi: 10.1029/2008JC004936 CrossRefGoogle Scholar
  28. Lorenz DJ, DeWeaver ET (2007) Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J Geophys Res 112:D10119. doi: 10.1029/2006JD008087 CrossRefGoogle Scholar
  29. Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett 34(6):L06805. doi: 10.1029/2006GL028443 CrossRefGoogle Scholar
  30. Madec G, Imbard M (1996) A global ocean mesh to overcome the North Pole singularity. Clim Dyn 12(6):381–388CrossRefGoogle Scholar
  31. Madec G, Delecluse P, Imbard M, Levy C (1998) OPA 8.1 Ocean General Circulation Model Reference Manual. Note du Pole de Modélisation, 11, Institut Pierre Simon Laplace, ParisGoogle Scholar
  32. Manizza M, Le Quéré C, Watson AJ, Buitenhuis ET (2005) Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model. Geophys Res Lett 32:L05603. doi: 10.1029/2004GL020778 CrossRefGoogle Scholar
  33. Manizza M, Le Quéré C, Watson AJ, Buitenhuis ET (2008) Ocean biogeochemical response to phytoplankton-light feedback in a global model. J Geophys Res-Oceans 113:C10010. doi: 10.1029/2007JC004478 CrossRefGoogle Scholar
  34. Marzeion B, Timmermann A, Murtugudde R, Jin FF (2005) Biophysical feedbacks in the tropical Pacific. J Climate 18(1):58–70CrossRefGoogle Scholar
  35. McClain CR (2009) A Decade of Satellite Ocean Color Observations. Annual Review of Marine Science 1:19–42CrossRefGoogle Scholar
  36. Meehl GA, Stocker TF, Collins P, Friedlingstein WD, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate ChangeGoogle Scholar
  37. Morel A, Antoine D (1994) Heating rate within the upper ocean in relation to its bio-optical state. J Phys Oceanogr 24(7):1652–1665CrossRefGoogle Scholar
  38. Murtugudde R, Beauchamp J, McClain CR, Lewis M, Busalacchi AJ (2002) Effects of penetrative radiation on the upper tropical ocean circulation. J Climate 15(5):470–486CrossRefGoogle Scholar
  39. Nakamoto S, Kumar SP, Oberhuber JM, Ishizaka J, Muneyama K, Frouin R (2001) Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model. Geophys Res Lett 28(10):2021–2024CrossRefGoogle Scholar
  40. Oschlies A (2004) Feedbacks of biotically induced radiative heating on upper-ocean heat budget, circulation, and biological production in a coupled ecosystem-circulation model. J Geophys Res Oceans 109:C12031. doi: 10.1029/2004JC002430 CrossRefGoogle Scholar
  41. Patara L, Visbeck M, Masina S, Krahmann G, Vichi M (2011) Marine biogeochemical responses to the North Atlantic Oscillation in a coupled climate model. J Geophys Res 116:C07023. doi: 10.1029/2010JC006785 CrossRefGoogle Scholar
  42. Paulson CA, Simpson JJ (1977) Irradiance measurements in upper ocean. J Phys Oceanogr 7(6):952–956CrossRefGoogle Scholar
  43. Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate Models and Their Evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate ChangeGoogle Scholar
  44. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  45. Röckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5, Part I: Model description. Max-Planck-Institute for Meteorology, Report No. 349, Hamburg, GermanyGoogle Scholar
  46. Russell JL, Stouffer RJ, Dixon KW (2006) Intercomparison of the Southern Ocean circulations in IPCC coupled model control simulations. J Climate 19(18):4560–4575CrossRefGoogle Scholar
  47. Sarmiento JL, Slater R, Barber R, Bopp L, Doney SC, Hirst AC, Kleypas J, Matear R, Mikolajewicz U, Monfray P, Soldatov V, Spall SA, Stouffer R (2004) Response of ocean ecosystems to climate warming. Glob Biogeochem Cy 18 (3): Art. No. GB3003Google Scholar
  48. Sathyendranath S, Gouveia AD, Shetye SR, Ravindran P, Platt T (1991) Biological-control of surface-temperature in the Arabian Sea. Nature 349(6304):54–56CrossRefGoogle Scholar
  49. Schneider EK (1984) Response of the annual and zonal mean winds and temperatures to variations in the heat and momentum sources. J Atmos Sci 41:1093–1115CrossRefGoogle Scholar
  50. Schneider EK, Zhu Z (1998) Sensitivity of the Simulated Annual Cycle of Sea Surface Temperature in the Equatorial Pacific to Sunlight Penetration. J Climate 11:1932–1950CrossRefGoogle Scholar
  51. Shell KM, Frouin R, Nakamoto S, Somerville RCJ (2003) Atmospheric response to solar radiation absorbed by phytoplankton. J Geophys Res 108:4445. doi: 10.1029/2003JD003440 CrossRefGoogle Scholar
  52. Strutton PG, Chavez FP (2004) Biological heating in the equatorial Pacific: Observed variability and potential for real-time calculation. J Climate 17(5):1097–1109CrossRefGoogle Scholar
  53. Sweeney C, Gnanadesikan A, Griffies SM, Harrison MJ, Rosati AJ, Samuels BL (2005) Impacts of shortwave penetration depth on large-scale ocean circulation and heat transport. J Phys Oceanogr 35(6):1103–1119CrossRefGoogle Scholar
  54. Timmermann A, Jin FF (2002) Phytoplankton influences on tropical climate. Geophys Res Lett 29:2104. doi: 10.1029/2002GL015434 CrossRefGoogle Scholar
  55. Timmermann R, Goosse H, Madec G, Fichefet T, Ethe C, Dulière V (2005) On the representation of high latitude processes in the ORCA-LIM global coupled sea ice-ocean model. Ocean Model 8:175–201CrossRefGoogle Scholar
  56. Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi: 10.1256/qj.04.176 CrossRefGoogle Scholar
  57. Valcke S, Caubel A, Vogelsang R, Declat D (2004) Oasis3 ocean atmosphere sea ice soil user’s guide. Technical Report TR/CMGC/04/68, CERFACS, Toulouse, FranceGoogle Scholar
  58. Vichi M, Masina S (2009) Skill assessment of the PELAGOS global ocean biogeochemistry model over the period 1980–2000. Biogeosciences 6:2333–2353CrossRefGoogle Scholar
  59. Vichi M, Masina S, Pinardi N (2007a) A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: Theory. J Mar Syst 64(1–4):89–109Google Scholar
  60. Vichi M, Masina S, Navarra A (2007b) A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part II: Numerical simulations. J Mar Syst 64(14):110–134CrossRefGoogle Scholar
  61. Vichi M, Manzini E, Fogli PG, Alessandri A, Patara L, Scoccimarro E, Masina S, Navarra A (2011) Global and regional ocean carbon uptake and climate change: Sensitivity to an aggressive mitigation scenario. Clim Dyn 37:1929–1947. doi: 10.1007/s00382-011-1079-0 CrossRefGoogle Scholar
  62. Wetzel P, Maier-Reimer E, Botzet M, Jungclaus J, Keenlyside N, Latif M (2006) Effects of ocean biology on the penetrative radiation in a coupled climate model. J Climate 19(16):3973–3987CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Lavinia Patara
    • 1
    • 2
    Email author
  • Marcello Vichi
    • 1
    • 4
  • Simona Masina
    • 1
    • 4
  • Pier Giuseppe Fogli
    • 1
  • Elisa Manzini
    • 1
    • 3
  1. 1.Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC)BolognaItaly
  2. 2.Helmholtz Centre for Ocean Research Kiel (GEOMAR)KielGermany
  3. 3.Max-Planck-Institut für MeteorologieHamburgGermany
  4. 4.Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC)Istituto Nazionale di Geofisica e Vulcanologia (INGV)BolognaItaly

Personalised recommendations