Climate Dynamics

, Volume 39, Issue 12, pp 2847–2866 | Cite as

The role of forcing and internal dynamics in explaining the “Medieval Climate Anomaly”

  • Hugues Goosse
  • Elisabeth Crespin
  • Svetlana Dubinkina
  • Marie-France Loutre
  • Michael E. Mann
  • Hans Renssen
  • Yoann Sallaz-Damaz
  • Drew Shindell
Article

Abstract

Proxy reconstructions suggest that peak global temperature during the past warm interval known as the Medieval Climate Anomaly (MCA, roughly 950–1250 AD) has been exceeded only during the most recent decades. To better understand the origin of this warm period, we use model simulations constrained by data assimilation establishing the spatial pattern of temperature changes that is most consistent with forcing estimates, model physics and the empirical information contained in paleoclimate proxy records. These numerical experiments demonstrate that the reconstructed spatial temperature pattern of the MCA can be explained by a simple thermodynamical response of the climate system to relatively weak changes in radiative forcing combined with a modification of the atmospheric circulation, displaying some similarities with the positive phase of the so-called Arctic Oscillation, and with northward shifts in the position of the Gulf Stream and Kuroshio currents. The mechanisms underlying the MCA are thus quite different from anthropogenic mechanisms responsible for modern global warming.

Keywords

Paleoclimate Last millennium Medieval Climate Anomaly Climate modelling Data assimilation Atmospheric and ocean dynamics Radiative forcing 

References

  1. Ammann CM, Joos F, Schimel DS, Otto-Bliesner BL, Tomas RA (2007) Solar influence on climate during the past millennium: results from transient simulations with the NCAR climate system model. Proc Natl Acad Sci USA 104:3713–3718CrossRefGoogle Scholar
  2. Bard E, Raisbeck G, Yiou F, Jouzel J (2007) Comment on “Solar activity during the last 1000 yr inferred from radionuclide records” by Muscheler et al. (2007). Quat Sci Rev 26:2301–2308CrossRefGoogle Scholar
  3. Berger AL (1978) Long-term variations of daily insolation and quaternary climatic changes. J Atmos Sci 35:2363–2367CrossRefGoogle Scholar
  4. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res 111:Art. No. D12106Google Scholar
  5. Brovkin V, Bendtsen J, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V, Andreev A (2002) Carbon cycle, vegetation and climate dynamics in the Holocene: experiments with the CLIMBER-2 model. Global Biogeochem Cycles 16. doi:10.1029/2001GB001662
  6. Burgman R, Seager R, Clement A, Herweijer C (2010) Role of tropical Pacific SSTs in global Medieval hydroclimate: a modeling study. Geophys Res Lett 37:L06705. doi:10.1029/2009GL042239 CrossRefGoogle Scholar
  7. Charlson RJ, Langner J, Rodhe H, Leovy CB, Warren SG (1991) Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus 43 AB:152–163Google Scholar
  8. Corti S, Molteni F, Palmer TN (1999) Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 398:799–802CrossRefGoogle Scholar
  9. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277CrossRefGoogle Scholar
  10. Crowley TJ, Baum SK, Kim KY, Hegerl GC, Hyde WT (2003) Modeling ocean heat content changes during the last millennium. Geophys Res Lett 30:1932CrossRefGoogle Scholar
  11. Dubinkina S, Goosse H, Sallaz-Damaz Y, Crespin E, Crucifix M (2011) Testing a particle filter to reconstruct climate changes over the past centuries. Int J Bifurc Chaos (in press)Google Scholar
  12. Esper J, Frank D (2009) The IPCC on a heterogeneous Medieval warm period. Clim Change 94:267–273CrossRefGoogle Scholar
  13. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  14. Frank DC, Esper J, Raible CC, Buntgen U, Trouet V, Stocker B, Joos F (2010) Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 463:527–532CrossRefGoogle Scholar
  15. Frankignoul C, de Coetlogon G, Joyce T, Dong S (2001) Gulf Stream variability and ocean–atmosphere interactions. J Phys Oceanogr 31:3516–3529CrossRefGoogle Scholar
  16. González-Rouco F, von Storch H, Zorita E (2003) Deep soil temperature as proxy for surface air-temperature in a coupled model simulation of the last thousand years. Geophys Res Lett 30(21):2116CrossRefGoogle Scholar
  17. González-Rouco FJ, Fernández-Donado L, Raible CC, Barriopedro D, Luterbacher J, Jungclaus JH, Swingedouw D, Servonnat J, Zorita E, Wagner S, Ammann CM (2011) Medieval Climate Anomaly to Little Ice Age transition as simulated by current climate models. In: Xoplaki E, Fleitmann D, Diaz H, von Gunten L, Kiefer T (eds) Medieval Climate Anomaly. Pages News 19(1):7–8Google Scholar
  18. Goosse H, Fichefet T (1999) Importance of ice–ocean interactions for the global ocean circulation: a model study. J Geophys Res 104:23337–23355CrossRefGoogle Scholar
  19. Goosse H, Renssen H (2004) Exciting natural modes of variability by solar and volcanic forcing: idealized and realistic experiments. Clim Dyn 23:153–163CrossRefGoogle Scholar
  20. Goosse H, Renssen H, Timmermann A, Bradley RS (2005a) Internal and forced climate variability during the last millennium: a model-data comparison using ensemble simulations. Quat Sci Rev 24:1345–1360CrossRefGoogle Scholar
  21. Goosse H, Crowley T, Zorita E, Ammann C, Renssen H, Driesschaert E (2005b) Modelling the climate of the last millennium: what causes the differences between simulations? Geophys Res Lett 32:L06710. doi:10.1029/2005GL22368 CrossRefGoogle Scholar
  22. Goosse H, Renssen H, Timmermann A, Bradley RS, Mann ME (2006) Using paleoclimate proxy-data to select optimal realisations in an ensemble of simulations of the climate of the past millennium. Clim Dyn 27:165–184CrossRefGoogle Scholar
  23. Goosse H, Brovkin V, Fichefet T, Haarsma R, Jongma J, Huybrechts P, Mouchet A, Selten F, Barriat P-Y, Campin J-M, Deleersnijder E, Driesschaert E, Goelzer H, Janssens I, Loutre M-F, Morales Maqueda MA, Opsteegh T, Mathieu P-P, Munhoven G, Petterson E, Renssen H, Roche DM, Schaeffer M, Severijns C, Tartinville B, Timmermann A, Weber N (2010) Description of the earth system model of intermediate complexity LOVECLIM version 1.2. Geosci Model Dev 3:603–633CrossRefGoogle Scholar
  24. Graham NE, Ammann CM, Fleitmann D, Cobb KM, Luterbacher J (2011) Support for global climate reorganization during the ‘Medieval Climate Anomaly’. Clim Dyn. doi:10.1007/s00382-010-0914-z Google Scholar
  25. Gregory JM, Dixon KW, Stouffer RJ, Weaver AJ, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Sokolov AP, Thorpe RB (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32:L12703. doi:10.1029/2005GL023209 CrossRefGoogle Scholar
  26. Hegerl GC, Stott PA, Allen MR, Mitchell JFB, Tett SFB, Cubasch U (2000) Optimal detection and attribution of climate change: sensitivity of results to climate model differences. Clim Dyn 16:737–754CrossRefGoogle Scholar
  27. Hegerl GC, Zwiers FW, Braconnot P, Gillett NP, Luo Y, Marengo Orsini JA, Nicholls N, Penner JE, Stott PA (2007) Understanding and attributing climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  28. Hughes MK, Diaz HF (1994) Was there a “Medieval warm period”, and if so, where and when? Clim Change 26:109–142CrossRefGoogle Scholar
  29. Hurrel JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  30. Jones PD, Briffa KR, Osborn TJ, Lough JM, van Ommen T, Vinther BM, Luterbacher J, Zwiers FW, Wahl E, Schmidt G, Ammann C, Mann ME, Wanner H, Buckley BM, Cobb K, Esper J, Goosse H, Graham N, Jansen E, Kiefer T, Kull C, Mosley-Thompson E, Overpeck JT, Schulz M, Tudhope S, Villalba R, Wolff E (2009) High-resolution paleoclimatology of the last millennium: a review of the current status and future prospects. Holocene 19:3–49CrossRefGoogle Scholar
  31. Jungclaus JH, Lorenz SJ, Timmreck C, Reick CH, Brovkin V, Six K, Segschneider J, Giorgetta MA, Crowley TJ, Pongratz J, Krivova NA, Vieira LE, Solanki SK, Klocke D, Botzet M, Esch M, Gayler V, Haak H, Raddatz TJ, Roeckner E, Schnur R, Widmann H, Claussen M, Stevens B, Marotzke J (2010) Climate and carbon-cycle variability over the last millennium. Clim Past 6:723–737CrossRefGoogle Scholar
  32. Kalnay E (2003) Atmospheric modeling, data assimilation and predictability. Cambridge University Press, CambridgeGoogle Scholar
  33. Korte M, Constable CG (2005) The geomagnetic dipole moment over the last 7000 years-new results from a global model. Earth Plan Sci Lett 236:348–358CrossRefGoogle Scholar
  34. Kwon Y-O, Alexander MA, Bond NA, Frankignoul C, Namamura H, Qiu B, Thomson LA (2010) Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: a review. J Clim 23:3249–3281CrossRefGoogle Scholar
  35. Liu J, Chen R (1998) Sequential Monte Carlo methods for dynamical systems. J Am Stat Assoc 93:1032–1044CrossRefGoogle Scholar
  36. Ljungqvist FC (2010) A new reconstruction of temperature variability in the extra-tropical northern hemisphere during the last two millennia. Geografiska Annaler Ser A 92A:339–351CrossRefGoogle Scholar
  37. Lund DC, Lynch-Stieglitz J, Curry WB (2006) Gulf Stream density structure and transport during the past millennium. Nature 444:601–604CrossRefGoogle Scholar
  38. Mann ME, Rutherford S, Wahl E, Ammann C (2007) Robustness of proxy-based climate field reconstruction methods. J Geophys Res 112:D12109. doi:10.1029/2006JD008272 CrossRefGoogle Scholar
  39. Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller S, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci 105:13252–13257CrossRefGoogle Scholar
  40. Mann ME, Zhang ZH, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni FB (2009) Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326:1256–1260CrossRefGoogle Scholar
  41. Miller RL, Schmidt GA, Shindell DT (2006) Forced annular variations in the 20th century Intergovernmental Panel on Climate Change fourth assessment report models. J Geophys Res 111:D18101. doi:10.1029/2005JD006323 CrossRefGoogle Scholar
  42. Muscheler R, Joos F, Beer J, Muller SA, Vonmoos M, Snowball I (2007) Solar activity during the last 1000 yr inferred from radionuclide records. Quat Sci Rev 26:82–97CrossRefGoogle Scholar
  43. Opsteegh JD, Haarsma RJ, Selten FM, Kattenberg A (1998) ECBilt: a dynamic alternative to mixed boundary conditions in ocean models. Tellus 50A:348–367Google Scholar
  44. Osborn TJ, Raper SCB, Briffa KR (2006) Simulated climate change during the last 1,000 years: comparing the ECHO-G general circulation model with the MAGICC simple climate model. Clim Dyn 27:185–197CrossRefGoogle Scholar
  45. Ramankutty N, Foley JA (1999) Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob Biogeoch Cycles 13(4):997–1027CrossRefGoogle Scholar
  46. Sansó B, Foresty CE, Zantedeschiz D (2008) Inferring climate system properties using a computer model. Bayesian Anal 3(1):1–38CrossRefGoogle Scholar
  47. Schmidt GA, Jungclaus JH, Ammann CM, Bard E, Braconnot P, Crowley TJ, Delaygue G, Joos F, Krivova NA, Muscheler R, Otto-Bliesner BL, Pongratz J, Shindell DT, Solanki SK, Steinhilber F, Vieira LEA (2011) Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci Model Dev 4:33–45CrossRefGoogle Scholar
  48. Seager R, Graham N, Herweijera C, Gordon AL, Kushnir Y, Cook E (2007) Blueprints for Medieval hydroclimate. Quat Sci Rev 26:2322–2336CrossRefGoogle Scholar
  49. Servonnat J, Yiou P, Khodri M, Swingedouw D, Denvil S (2010) Influence of solar variability CO2 and orbital forcing between 1000 and 1850 AD in the IPSLCM4 model. Clim Past 6:445–460CrossRefGoogle Scholar
  50. Shapiro AI, Schmutz W, Rozanov E, Schoell M, Haberreiter M, Shapiro AV, Nyeki S (2011) A new approach to long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astron Astrophys 529:A67. doi:10.1051/0004-6361/201016173 CrossRefGoogle Scholar
  51. Shindell DT, Schmidt GA, Mann ME, Rind D, Waple A (2001) Solar forcing of regional climate change during the Maunder Minimum. Science 294:2149–2152CrossRefGoogle Scholar
  52. Shindell DT, Schmidt GA, Miller R, Mann ME (2003) Volcanic and solar forcing of climate change during the pre-industrial era. J Clim 16:4094–4107CrossRefGoogle Scholar
  53. Shindell DT, Faluvegi G, Schmidt GA, Miller RL, Hansen JE, Sun S (2006) Solar and anthropogenic forcing of tropical hydrology. Geophys Res Lett 33:L24706. doi:10.1029/2006GL027468 CrossRefGoogle Scholar
  54. Swingedouw D, Terray L, Cassou C, Voldoire A, Salas-Mélia D, Servonnat J (2011) Natural forcing of climate during the last millennium: fingerprint of solar variability. Clim Dyn 36:1349–1364CrossRefGoogle Scholar
  55. Talagrand O (1997) Assimilation of observations, an introduction. J Met Soc Jpn. Special Issue 75, 1B:191–209Google Scholar
  56. Trouet V, Esper J, Graham N, Baker A, Scourse JD, Frank DC (2009) Persistent positive North Atlantic Oscillation mode dominated the Medieval Climate Anomaly. Science 324:78–80CrossRefGoogle Scholar
  57. van Leeuwen PJ (2009) Particle filtering in geophysical systems. Mon Weather Rev 137:4089–4114CrossRefGoogle Scholar
  58. Wallace JM, Zhang Y, Renwick JA (1995) Dynamic contribution to hemispheric mean temperature trends. Science 270:780–783CrossRefGoogle Scholar
  59. Wang YM, Lean J, Sheeley NR (2005) Modeling the sun’s magnetic field and irradiance since 1713. Astrophys J 625:522–538CrossRefGoogle Scholar
  60. Wanner H, Brönnimann S, Casty C, Gyalistras D, Luterbacher J, Schmutz C, Stephenson DB, Xoplaki E (2001) North Atlantic Oscillation—concepts and studies. Surv Geophys 22:321–382CrossRefGoogle Scholar
  61. Widmann M, Goosse H, van der Schrier G, Schnur R, Barkmeijer J (2010) Using data assimilation to study extratropical Northern Hemisphere climate over the last millennium. Clim Past 6:627–644CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Hugues Goosse
    • 1
  • Elisabeth Crespin
    • 1
  • Svetlana Dubinkina
    • 1
  • Marie-France Loutre
    • 1
  • Michael E. Mann
    • 2
  • Hans Renssen
    • 3
  • Yoann Sallaz-Damaz
    • 1
  • Drew Shindell
    • 4
  1. 1.Earth and Life Institute, Georges Lemaître Centre for Earth and Climate ResearchUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Department of Meteorology and Earth and Environmental Systems InstitutePennsylvania State UniversityUniversity ParkUSA
  3. 3.Section Climate Change and Landscape Dynamics, Department of Earth SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
  4. 4.NASA Goddard Institute for Space StudiesNew York CityUSA

Personalised recommendations