Climate Dynamics

, Volume 39, Issue 7–8, pp 2013–2023 | Cite as

Sensitivity of decadal predictions to the initial atmospheric and oceanic perturbations

  • H. Du
  • F. J. Doblas-Reyes
  • J. García-Serrano
  • V. Guemas
  • Y. Soufflet
  • B. Wouters
Article

Abstract

A coupled global atmosphere–ocean model is employed to investigate the impact of initial perturbation methods on the behaviour of five-member ensemble decadal re-forecasts. Three initial-condition perturbation strategies, atmosphere only, ocean only and atmosphere–ocean, have been used and the impact on selected variables have been investigated. The impact has been assessed in terms of climate drift, forecast quality and spread. The simulated global means of near-surface air temperature (T2M), sea surface temperature (SST) and sea ice area (SIA) for both Arctic and Antarctic show reasonably good quality, in spite of the non-negligible drift of the model. The skill in terms of correlation is not significantly affected by the particular perturbation method employed. The ensemble spread generated for T2M, SST and land surface precipitation (PCP) saturates quickly with any of the perturbation methods. However, for SIA, Atlantic meridional overturning circulation (AMOC) and ocean heat content (OHC), the spread increases substantially during the forecast time when ocean perturbations are applied. Ocean perturbations are particularly important for Antarctic SIA and OHC for the middle and deep layers of the ocean. The results will be helpful in the design of ensemble prediction experiments.

Keywords

Decadal Ensemble Perturbation Prediction Spread 

Notes

Acknowledgments

This work was supported by the EU-funded QWeCI (FP7-ENV-2009-1-243964) and the MICINN-funded RUCSS (CGL2010-20657) projects. The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the Red Española de Supercomputación (RES).

References

  1. Balmaseda MA, Mogensen K, Molteni F, Weaver AT (2010) The NEMOVAR-COMBINE ocean re-analysis. NEMOVAR technical reports No. 1. Avaible from http://www.combine-project.eu/Technical-Reports.1668.0.html
  2. Brodeau L, Barnier B, Treguier A-M, Penduff T, Gulev S (2009) An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Model 31:88–104. doi: 10.1016/j.ocemod.2009.10.005 CrossRefGoogle Scholar
  3. Doblas-Reyes FJ, Weisheimer A, Déqué M, Keenlyside N, McVean M, Murphy JM, Rogel P, Smith D, Palmer TN (2009) Addressing model uncertainty in seasonal and annual dynamical seasonal forecasts. Q J R Meteorol Soc 135:1538–1559. doi: 10.1002/qj.464 CrossRefGoogle Scholar
  4. Doblas-Reyes FJ, Balmaseda MA, Weisheimer A, Palmer TN (2011) Decadal climate prediction with the ECMWF coupled forecast system: Impact of ocean observations. J Geophys Res A 116:D19111. doi: 10.1029/2010JD015394 CrossRefGoogle Scholar
  5. García-Serrano J, Doblas-Reyes FJ (2011) On the assessment of near-surface global temperature and North Atlantic multi-decadal variability in the ENSEMBLES decadal hindcast. Clim Dyn (submitted)Google Scholar
  6. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90:1095–1107. doi: 10.1175/2009BAMS2607.1 CrossRefGoogle Scholar
  7. Hawkins E, Robson J, Sutton R, Smith D, Keenlyside N (2011) Evaluating the potential for statistical decadal predictions of sea surface temperature with a perfect model approach. Clim Dyn. doi: 10.1007/s00382-011-1023-3
  8. Hazeleger W et al (2010) EC-earth: a seamless earth-system prediction approach in action. Bull Am Meteorol Soc 91:1357–1363. doi: 10.1175/2010BAMS2877.1 CrossRefGoogle Scholar
  9. Hermanson L, Sutton RT (2009) Climate predictability in the second year. Philos Trans R Soc A 367:913–916CrossRefGoogle Scholar
  10. Ingleby B, Huddleston M (2007) Quality control of ocean temperature and salinity profiles—historical and real-time data. J Marine Syst 65:158–175CrossRefGoogle Scholar
  11. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470CrossRefGoogle Scholar
  12. Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88. doi: 10.1038/nature06921 CrossRefGoogle Scholar
  13. Lean JL, Rind DH (2009) How will earth’s surface temperature change in future decades. Geophys Res Lett 36:L15708. doi: 10.1029/2009GL038932 CrossRefGoogle Scholar
  14. Magnusson L, Leutbecher M, Kallen E (2008) Comparison between singular vectors and breeding vectors as initial perturbations for the ECMWF ensemble prediction system. Mon Weather Rev 134:4092–4104CrossRefGoogle Scholar
  15. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394CrossRefGoogle Scholar
  16. Meehl GA, Goddard L, Murphy J, Stouffer RJ, Boer G, Danabasoglu G, Dixon K, Giorgetta MA, Greene AM, Hawkins E, Hegerl G, Karoly D, Keenlyside N, Kimoto M, Kirtman B, Navarra A, Pulwarty R, Smith D, Stammer D, Stockdale T (2009) Decadal prediction, can it be skillful? Bull Am Meteorol Soc 90:1467–1485. doi: 10.1175/2009BAMS2778.1 CrossRefGoogle Scholar
  17. Meier WN, Stroeve J, Fetterer F (2007) Whither Arctic sea ice? A clear signal of decline regionally, seasonally, and extending beyond the satellite record. Annals Glaciol 46:428–434. doi: 10.3189/172756407782871170 CrossRefGoogle Scholar
  18. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Clim 25:693–712CrossRefGoogle Scholar
  19. Mochizuki T, Ishii M, Kimoto M, Chikamoto Y, Watanabe M, Nozawa T, Sakamoto TT, Shiogama H, Awaji T, Sugiura N, Toyoda T, Yasunaka S, Tatebe H, Mori M (2010) Pacific decadal oscillation hindcasts relevant to near-term climate prediction. PNAS 107:1833–1837. doi: 10.1073/pnas.0906531107 CrossRefGoogle Scholar
  20. Mogensen KS, Balmaseda MA, Weaver A (2012) The NEMOVAR ocean data assimilation as implemented in the ECMWF ocean analysis for system 4. ECMWF technical memorandum No. 657 (in preparation)Google Scholar
  21. Pohlmann H, Jungclaus JH, Köhl A, Stammer D, Marotzke J (2009) Initializing decadal climate predictions with the GECCO oceanic synthesis: effects on the North Atlantic. J Climate 22:3926–3938CrossRefGoogle Scholar
  22. Räisänen J, Ruokolainen L (2006) Probabilistic forecasts of near-term climate change based on a resampling ensemble technique. Tellus A 58:461–472. doi: 10.1111/j.1600-0870.2006.00189.x Google Scholar
  23. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 Google Scholar
  24. Ruokolainen L, Räisänen J (2007) Probabilistic forecasts of near-term climate change: sensitivity to adjustment of simulated variability and choice of baseline period. Tellus A 59A:309–320. doi: 10.1111/j.1600-0870.2007.00233.x CrossRefGoogle Scholar
  25. Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799. doi: 10.1126/science.1139540 CrossRefGoogle Scholar
  26. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296CrossRefGoogle Scholar
  27. Taylor KE, Stouffer RJ, Meehl GA (2011) A summary of the CMIP5 experiment design. Available from http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_design.pdf
  28. Uppala SM et al (2005) The ERA-40 reanalysis. Q J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  29. Weisheimer A, Doblas-Reyes FJ, Palmer TN, Alessandri A, Arribas A, Déqué M, Keenlyside N, MacVean M, Navarra A, Rogel P (2009) ENSEMBLES—a new multi-model ensemble for seasonal-to-annual predictions: skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. Geophys Res Lett 36:L21711. doi: 10.1029/2009GL040896

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • H. Du
    • 1
  • F. J. Doblas-Reyes
    • 1
    • 2
  • J. García-Serrano
    • 1
  • V. Guemas
    • 1
  • Y. Soufflet
    • 1
  • B. Wouters
    • 3
  1. 1.Institut Català de Ciències del Clima (IC3)BarcelonaSpain
  2. 2.Instituciò Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  3. 3.Royal Netherlands Meteorological Institute (KNMI)De BiltThe Netherlands

Personalised recommendations