Climate Dynamics

, Volume 39, Issue 9–10, pp 2361–2375

Breaking down the tropospheric circulation response by forcing

  • Paul W. Staten
  • Jonathan J. Rutz
  • Thomas Reichler
  • Jian Lu


This study describes simulated changes in the general circulation during the twentieth and twenty-first centuries due to a number of individual direct radiative forcings and warming sea surface temperatures, by examining very long time-slice simulations created with an enhanced version of the Geophysical Fluid Dynamics Laboratories Atmospheric Model AM 2.1. We examine the effects of changing stratospheric ozone, greenhouse gas concentrations, and sea surface temperatures individually and in combination over both hemispheres. Data reveal robust poleward shifts in zonal mean circulation features in present-day simulations compared to a pre-industrial control, and in future simulations compared to present-day. We document the seasonality and significance of these shifts, and find that the combined response is well approximated by the sum of the individual responses. Our results suggest that warming sea surface temperatures are the main driver of circulation change over both hemispheres, and we project that the southern hemisphere jet will continue to shift poleward, albeit more slowly during the summer due to expected ozone recovery in the stratosphere.


Global climate modeling General circulation Stratosphere/troposphere interactions 



Twentieth century AR4 simulation


Annular mode


Atmospheric Model v. 2.1


Fourth assessment


Community Atmosphere Model version 3


Coupled chemistry climate models


Climate model version 2.1


Canadian Middle Atmosphere Model


Coupled Model Intercomparison Project


December, January, and February


Deser and Phillips (2009)


European Centre for Medium-Range Weather Forecasts 40 Year Re-analysis Project


Geophysical Fluid Dynamics Laboratory


Intergovernmental Panel on Climate Change


Intertropical convergence zone


June, July, and August


Kang et al. (2011)


Northern annular mode


National Center for Atmospheric Research


Northern hemisphere


Polvani et al. (2011a)


Polvani et al. (2011b)




Southern annular mode


Southern hemisphere


Sea surface temperature

Supplementary material

382_2011_1267_MOESM1_ESM.eps (537 kb)
Supplementary Figure S1 As with Figure 2 but for June-July-August (EPS 536 kb)
382_2011_1267_MOESM2_ESM.eps (857 kb)
Supplementary Figure S2 As with Figure 3 but for June-July-August (EPS 857 kb)
382_2011_1267_MOESM3_ESM.eps (626 kb)
Supplementary Figure S3 Left column as with Figure 2 and right column as with Figure 3, but for changes between present-day and the year 2100 (EPS 626 kb)


  1. Anderson JL, Balaji V, Broccoli AJ, Cooke WF, Delworth TL, Dixon KW, Donner LJ, Dunne KA, Freidenreich SM, Garner ST, Gudgel RG, Gordon CT, Held IM, Hemler RS, Horowitz LW, Klein SA, Knutson TR, Kushner PJ, Langenhost AR, Lau NC, Liang Z, Malyshev SL, Milly PCD, Nath MJ, Ploshay JJ, Ramaswamy V, Schwarzkopf MD, Shevliakova E, Sirutis JJ, Soden BJ, Stern WF, Thompson LA, Wilson RJ, Wittenberg AT, Wyman BL, Dev GGAM (2004) The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations. J Climate 17(24):4641–4673CrossRefGoogle Scholar
  2. Arblaster JM, Meehl GA (2006) Contributions of external forcings to southern annular mode trends. J Climate 19(12):2896–2905CrossRefGoogle Scholar
  3. Austin J, Wilson J, Li F, Vömel H (2007) Evolution of water vapor concentrations and stratospheric age of air in coupled chemistry-climate model simulations. J Atmos Sci 64:905–921. doi:10.1175/JAS3866.1 Google Scholar
  4. Baldwin MP, Thompson DWJ (2009) A critical comparison of stratosphere–troposphere coupling indices. Q J R Meteorol Soc 135(644):1661–1672CrossRefGoogle Scholar
  5. Cionni I, Eyring V, Lamarque J-F, Randel WJ, Stevenson DS, Wu F, Bodeker GE, Shepherd TG, Shindell DT, Waugh DW (2011) Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing. Atmos Chem Phys 11:11267–11292. doi:10.5194/acp-11-11267-2011 CrossRefGoogle Scholar
  6. Delworth TL, Broccoli AJ, Rosati A, Stouffer RJ, Balaji V, Beesley JA, Cooke WF, Dixon KW, Dunne J, Dunne KA, Durachta JW, Findell KL, Ginoux P, Gnanadesikan A, Gordon CT, Griffies SM, Gudgel R, Harrison MJ, Held IM, Hemler RS, Horowitz LW, Klein SA, Knutson TR, Kushner PJ, Langenhorst AR, Lee HC, Lin SJ, Lu J, Malyshev SL, Milly PCD, Ramaswamy V, Russell J, Schwarzkopf MD, Shevliakova E, Sirutis JJ, Spelman MJ, Stern WF, Winton M, Wittenberg AT, Wyman B, Zeng F, Zhang R (2006) GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Climate 19(5):643–674CrossRefGoogle Scholar
  7. Deser C, Phillips AS (2009) Atmospheric circulation trends, 1950–2000: the relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. J Climate 22(2):396–413CrossRefGoogle Scholar
  8. Fletcher CG, Hardiman SC, Kushner PJ, Cohen J (2009) The dynamical response to snow cover perturbations in a large ensemble of atmospheric GCM integrations. J Climate 22(5):1208–1222. doi:10.1175/2008JCLI2505.1 CrossRefGoogle Scholar
  9. Fogt RL, Perlwitz J, Monaghan AJ, Bromwich DH, Jones JM, Marshall GJ (2009) Historical SAM variability. Part II: twentieth-century variability and trends from reconstructions, observations, and the IPCC AR4 models. J Climate 22(20):5346–5365. doi:10.1175/2009JCLI2786.1 CrossRefGoogle Scholar
  10. Gillett NP, Thompson DWJ (2003) Simulation of recent Southern Hemisphere climate change. Science 302(5643):273–275CrossRefGoogle Scholar
  11. Hu Y, Fu Q (2007) Observed poleward expansion of the Hadley circulation since 1979. Atmos Chem Phys 7(19):5229–5236CrossRefGoogle Scholar
  12. Hu Y, Zhou C, Liu J (2011) Observational evidence for poleward expansion of the Hadley circulation. Adv Atmos Sci 28(1):33–44. doi:10.1007/s00376-010-0032-1 CrossRefGoogle Scholar
  13. Johanson CM, Fu Q (2009) Hadley cell widening: model simulations versus observations. J Climate 22(10):2713–2725CrossRefGoogle Scholar
  14. Kang SM, Polvani LM (2010) The interannual relationship between the latitude of the eddy-driven jet and the edge of the Hadley cell. J Climate 24(2):563–568. doi:10.1175/2010JCLI4077.1 CrossRefGoogle Scholar
  15. Kang SM, Polvani LM, Fyfe JC, Sigmond M (2011) Impact of polar ozone depletion on subtropical precipitation. Science 332:951–954. doi:10.1126/science.1202131 CrossRefGoogle Scholar
  16. Karpechko AY, Gillett NP, Marshall GJ, Scaife AA (2008) Stratospheric influence on circulation changes in the Southern Hemisphere troposphere in coupled climate models. Geophys Res Lett 35(20):L20806CrossRefGoogle Scholar
  17. Kidston J, Vallis GK (2010) Relationship between eddy-driven jet latitude and width. Geophys Res Lett 37(21):L21809CrossRefGoogle Scholar
  18. Kushner PJ, Held IM, Delworth TL (2001) Southern Hemisphere atmospheric circulation response to global warming. J Climate 14(10):2238–2249CrossRefGoogle Scholar
  19. Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett 34(6):L06805CrossRefGoogle Scholar
  20. Lu J, Chen G, Frierson DMW (2010) The position of the midlatitude storm track and eddy-driven westerlies in aquaplanet AGCMs. J Atmos Sci 67(12):3984–4000. doi:10.1175/2010JAS3477.1 CrossRefGoogle Scholar
  21. McLandress C, Shepherd TG, Scinocca JF, Plummer DA, Sigmond M, Jonsson AI, Reader MC (2011) Separating the dynamical effects of climate change and ozone depletion: part II. Southern Hemisphere troposphere. J Climate 24(6):1850–1868. doi:10.1175/2010JCLI3958.1 CrossRefGoogle Scholar
  22. Miller RL, Schmidt GA, Shindell DT (2006) Forced annular variations in the 20th century intergovernmental panel on climate change fourth assessment report models. J Geophys Res 111(D18):D18101CrossRefGoogle Scholar
  23. Ming Y, Ramaswamy V (2009) Nonlinear climate and hydrological responses to aerosol effects. J Climate 22(6):1329–1339. doi:10.1175/2008JCLI2362.1 CrossRefGoogle Scholar
  24. Perlwitz J (2011) Atmospheric science: tug of war on the jet stream. Nat Clim Chang 1(1):29–31CrossRefGoogle Scholar
  25. Perlwitz J, Pawson S, Fogt RL, Nielsen JE, Neff WD (2008) Impact of stratospheric ozone hole recovery on antarctic climate. Geophys Res Lett 35(8):L08714. doi:10.1029/2008GL033317 CrossRefGoogle Scholar
  26. Polvani LM, Kushner PJ (2002) Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys Res Lett 29(7):1114. doi:10.1029/2001GL014284 Google Scholar
  27. Polvani LM, Previdi M, Deser C (2011a) Large cancellation, due to ozone recovery, of future Southern Hemisphere atmospheric circulation trends. Geophys Res Lett 38(4):L04707CrossRefGoogle Scholar
  28. Polvani LM, Waugh DW, Correa GJP, Son S-W (2011b) Stratospheric ozone depletion: the main driver of 20th century atmospheric circulation changes in the Southern Hemisphere. J Climate 24:795–812. doi:10.1175/2010JCLI3772.1 CrossRefGoogle Scholar
  29. Randel WJ, Wu F (2007) A stratospheric ozone profile data set for 1979–2005: variability, trends, and comparisons with column ozone data. J Geophys Res 112:D06313. doi:10.1029/2006JD007339
  30. Reichler T (2009) Changes in the atmospheric circulation as indicator of climate change. In: Letcher TM (ed) Climate change: observed impacts on planet Earth. Elsevier, AmsterdamGoogle Scholar
  31. Rosenlof KH (2002) Transport changes inferred from HALOE water and methane measurements. J Meteorol Soc Jpn 80(4B):831–848CrossRefGoogle Scholar
  32. Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1(1):21–24Google Scholar
  33. Shindell DT, Schmidt GT (2004) Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Geophys Res Lett 31:L18209. doi:10.1029/2004GL020724 CrossRefGoogle Scholar
  34. Son S-W, Polvani LM, Waugh DW, Akiyoshi H, Garcia R, Kinnison D, Pawson S, Rozanov E, Shepherd TG, Shibata K (2008) The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science 320(5882):1486–1489CrossRefGoogle Scholar
  35. Son S-W, Polvani LM, Waugh DW, Birner T, Akiyoshi H, Garcia RR, Gettelman A, Plummer DA, Rozanov E (2009a) The impact of stratospheric ozone recovery on tropopause height trends. J Climate 22(2):429–445CrossRefGoogle Scholar
  36. Son S-W, Tandon NF, Polvani LM, Waugh DW (2009b) Ozone hole and Southern Hemisphere climate change. Geophys Res Lett 36. doi:10.1029/2009GL038671
  37. Son SW, Gerber EP, Perlwitz J, Polvani LM, Gillett NP, Seo KH, Eyring V, Shepherd TG, Waugh D, Akiyoshi H, Austin J, Baumgaertner A, Bekki S, Braesicke P, Brühl C, Butchart N, Chipperfield MP, Cugnet D, Dameris M, Dhomse S, Frith S, Garny H, Garcia R, Hardiman SC, Jöckel P, Lamarque JF, Mancini E, Marchand M, Michou M, Nakamura T, Morgenstern O, Pitari G, Plummer DA, Pyle J, Rozanov E, Scinocca JF, Shibata K, Smale D, Teyssèdre H, Tian W, Yamashita Y (2010) Impact of stratospheric ozone on Southern Hemisphere circulation change: a multimodel assessment. J Geophys Res 115:D00M07CrossRefGoogle Scholar
  38. Staten PW, Reichler T, Lu J (2010) Understanding the direct and indirect circulation response to radiative forcings. Paper presented at the AGU Fall Meeting, San Francisco, CA, USA, 13–17 December. Available online at
  39. Thompson WJ, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 296:895. doi:10.1126/science.1069270 CrossRefGoogle Scholar
  40. Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Climate 13(5):1000–1016CrossRefGoogle Scholar
  41. Zhou YP, Xu K-M, Sud YC, Betts AK (2011) Recent trends of the tropical hydrological cycle inferred from global precipitation climatology project and international satellite cloud climatology project data. J Geophys Res 116(D9):D09101CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Paul W. Staten
    • 1
  • Jonathan J. Rutz
    • 1
  • Thomas Reichler
    • 1
  • Jian Lu
    • 2
  1. 1.Department of Atmospheric SciencesUniversity of UtahSalt Lake CityUSA
  2. 2.IGES/COLA, Center for Ocean-Land-Atmosphere StudiesCalvertonUSA

Personalised recommendations