Advertisement

Climate Dynamics

, Volume 38, Issue 3–4, pp 433–454 | Cite as

Synoptic and mesoscale controls on the isotopic composition of precipitation in the western United States

  • M. Berkelhammer
  • L. Stott
  • K. Yoshimura
  • K. Johnson
  • A. Sinha
Article

Abstract

We present a new event-scale catalog of stable isotopic measurements from 5 years of storm events at 4 sites in southern California, which is used to understand the storm to storm controls on the isotopic composition of precipitation and validate the event-scale performance of an isotope-enabled GCM simulation (IsoGSM) (Yoshimura et al. 2008). These analyses are motivated to improve the interpretation of proxy records from this region and provide guidance in testing the skill of GCMs in reproducing the hydrological variability in the western US. We find that approximately 40% of event-scale isotopic variability arises from the percentage of precipitation that is convective and the near surface relative humidity in the days prior to the storms landfall. The additional isotopic variability arises from the fact that storms arriving from different source regions advect moisture of distinct isotopic compositions. We show using both field correlation and Lagrangian trajectory analysis that the advection of subtropical and tropical moisture is important in producing the most isotopically enriched precipitation. The isotopic catalog is then used along with satellite-derived δD retrievals of atmospheric moisture to benchmark the performance of the IsoGSM model for the western US. The model is able to successfully replicate the observed isotopic variability suggesting that it is closely reproducing the moisture transport and storm track dynamics that drive the large storm-to-storm isotopic range. Notably, we find that an increase in moisture flux from the central tropical Pacific leads to a convergence of isotopically enriched water vapor in the subtropics and consequently an increase in δ18O of precipitation at sites along the entire west coast. Changes in poleward moisture flux from the central Tropical Pacific have important implications for both the global hydrological cycle and regional precipitation amounts and we suggest such changes can be captured through instrumental and proxy-reconstruction of the spatiotemporal isotopic patterns in the precipitation along the west coast of the US.

Keywords

Isotope hydrology Model validation Global hydrologic cycle 

Notes

Acknowledgments

The authors would like to gratefully acknowledge Christopher Lehmann and the National Atmospheric Deposition Program for providing the water samples used in this study and also thank the team from the Tropospheric Emissions Spectrometer and SCIAMACHY for generous access to their data. The quality of this manuscript was greatly improved by the comments from two reviewers. Funding for the work was provided by the National Science Foundation Grants 0825325 and 0902507 to LS.

Supplementary material

382_2011_1262_MOESM1_ESM.doc (304 kb)
DOC (303 KB)
382_2011_1262_MOESM2_ESM.pdf (3.3 mb)
PDF (3406 KB)

References

  1. Adler R, Susskind J, Huffman G, Bolvin D, Nelkin E, Chang A, Ferraro R, Gruber A, Xie P, Janowiak J et al (2009) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present)Google Scholar
  2. Alley RB, Cuffey KM (2001) Oxygen- and Hydrogen-isotopic ratios of water in precipitation: beyond paleothermometry. Stable Isot Geochem 43:527–553Google Scholar
  3. Anderson L, Abbott MB, Finney BP, Edwards ME (2005) Palaeohydrology of the southwest Yukon territory, Canada, based on multiproxy analyses of lake sediment cores from a depth transect. Holocene 15(8):1172–1183CrossRefGoogle Scholar
  4. Bao JW, Michelson SA, Neiman PJ, Ralph FM, Wilczak JM (2006) Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: their formation and connection to tropical moisture. Mon Weather Rev 134(4):1063–1080CrossRefGoogle Scholar
  5. Benson L, Klieforth H (1989) Stable isotopes in precipitation and ground water in the Yucca Mountain region, southern Nevada: paleoclimatic implications. Geophys Monogr 55:18Google Scholar
  6. Birks SJ, Edwards TWD (2009) Atmospheric circulation controls on precipitation isotope-climate relations in western Canada. Tellus Ser B-Chem Phys Meteorol 61(3):566–576Google Scholar
  7. Bony S, Risi C, Vimeux F (2008) Influence of convective processes on the isotopic composition (δ O-18 and δD) of precipitation and water vapor in the tropics: 1. Radiative-convective equilibrium and Tropical Ocean-Global Atmosphere–Coupled Ocean-Atmosphere Response Experiment (TOGA–COARE) simulations. J Geophys Res Atmos 113(D19):D19305CrossRefGoogle Scholar
  8. Brown D, Worden J, Noone D (2008) Comparison of atmospheric hydrology over convective continental regions using water vapor isotope measurements from space. J Geophys Res Atmos 113(D15):D15124CrossRefGoogle Scholar
  9. Cappa C, Hendricks M, DePaolo D, Cohen R (2003) Isotopic fractionation of water during evaporation. J Geophys Res 108(D16):4525CrossRefGoogle Scholar
  10. Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, Boca RatonGoogle Scholar
  11. Compo GP, Whitaker JS, Sardeshmukh PD (2006) Feasibility of a 100-year reanalysis using only surface pressure data. Bull Am Meteorol Soc 87(2):175−190Google Scholar
  12. Conroy JL, Overpeck JT, Cole JE, Steinitz-Kannan M (2009) Variable oceanic influences on western North American drought over the last 1200 years. Geophys Res Lett 36(17):L17703Google Scholar
  13. Cook ER, Seager R, Cane MA, Stahle DW (2007) North American drought: reconstructions, causes, and consequences. Earth Sci Rev 81(1–2):93–134CrossRefGoogle Scholar
  14. Coplen T, Neiman PJ, White AB, Landwehr JM, Ralph FM, Dettinger MD (2008) Extreme changes in stable hydrogen isotopes and precipitation characteristics in a landfalling pacific storm. Geophys Res Lett 35:L21808Google Scholar
  15. Craig H, Gordon L (1965) Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. Stable Isot Oceanogr Stud Paleotemperatures, Spoleto, 9:1–122Google Scholar
  16. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:33CrossRefGoogle Scholar
  17. Dettinger MD, Cayan DR, Meyer M, Jeton AE (2004) Simulated hydrologic responses to climate variations and change in the Merced, Carson, and American River Basins, Sierra Nevada, California, 1900–2099. Clim Change 62(1–3):283–317CrossRefGoogle Scholar
  18. Draxler R, Rolph G (2003) Hysplit (hybrid single-particle lagrangian integrated trajectory) model access via NOAA ARL ready website. http://www.arl.noaa.gov/ready/hysplit4.html
  19. Edwards TWD, Birks SJ, Luckman BH, MacDonald GM (2008) Climatic and hydrologic variability during the past millennium in the eastern rocky mountains and northern great plains of western canada. Quat Res 70(2):188–197CrossRefGoogle Scholar
  20. Ehhalt D (1971) Vertical profiles and transport of HTO in the troposphere. J Geophys Res 76(30):7351–7367CrossRefGoogle Scholar
  21. Eltahir EAB, Bras RL (1996) Precipitation recycling. Rev Geophys 34(3):367–378CrossRefGoogle Scholar
  22. Feng XH, Faiia AM, Posmentier ES (2009) Seasonality of isotopes in precipitation: a global perspective. J Geophys Res Atmos 114(D8):D08116CrossRefGoogle Scholar
  23. Field R (2010) Observed and modeled controls on precipitation δ18O over europe: from local temperature to the northern annular mode. J Geophys Res 115:D12101CrossRefGoogle Scholar
  24. Field R, Jones D, Brown D (2010) Effects of postcondensation exchange on the isotopic composition of water in the atmosphere. J Geophys Res 115:D24305CrossRefGoogle Scholar
  25. Fisher D, Wake C, Kreutz K, Yalcin K, Steig E, Mayewski P, Anderson L, Zheng J, Rupper S, Zdanowicz C, Demuth M, Waszkiewicz M, Dahl-Jensen D, Goto-Azuma K, Bourgeois J, Koerner R, Sekerka J, Osterberg E, Abbott M, Finney B, Burns S (2004) Stable isotope records from Mt. Logan, Eclipse ice cores and nearby Jellybean Lake. water cycle of the north Pacific over 2,000 years and over five vertical kilometres: Sudden shifts and tropical connections. Geographie phsyique et Quaternaire 58(2–3)Google Scholar
  26. Frankenberg C, Yoshimura K, Warneke T, Aben I, Butz A, Deutscher N, Griffith D, Hase F, Notholt J, Schneider M, Schrijver H, Rockmann T (2009) Dynamic processes governing lower-tropospheric HDO/H2O ratios as observed from space and ground. Science 325(5946):1374–1377CrossRefGoogle Scholar
  27. Fricke HC, O’Neil JR (1999) The correlation between o-18/o-16 ratios of meteoric water and surface temperature: its use in investigating terrestrial climate change over geologic time. Earth Planet Sci Lett 170(3):181–196CrossRefGoogle Scholar
  28. Friedman I, Harris JM, Smith GI, Johnson CA (2002) Stable isotope composition of waters in the Great Basin, United States—1. Air-mass trajectories. J Geophys Res Atmos 107(19):1–14Google Scholar
  29. Friedman I, Smith GI, Gleason JD, Warden A, Harris JM (1992) Stable isotope composition of waters in Southeastern California—1. Modern precipitation. J Geophys Res Atmos 97(D5):5795–5812Google Scholar
  30. Gedzelman S (1988) Deuterium in water vapor above the atmospheric boundary layer. Tellus B 40(2):134–147CrossRefGoogle Scholar
  31. Gedzelman S, Arnold R (1994) Modeling the isotopic composition of precipitation. J Geophys Res 99(D5):10455CrossRefGoogle Scholar
  32. Graham N, Hughes M, Ammann C, Cobb K, Hoerling M, Kennett D, Kennett J, Rein B, Stott L, Wigand P, Xu T (2007) Tropical pacific-mid-latitude teleconnections in Medieval times. Clim Change 45:241–285CrossRefGoogle Scholar
  33. Harvey FE (2001) Use of NADP archive samples to determine the isotope composition of precipitation: characterizing the meteoric input function for use in ground water studies. Ground Water 39(3):380–390CrossRefGoogle Scholar
  34. Harvey FE, Welker JM (2000) Stable isotopic composition of precipitation in the semi-arid north-central portion of the US Great Plains. J Hydrol 238:90–109CrossRefGoogle Scholar
  35. Henderson-Sellers A, Fischer M, Aleinov I, McGuffie K, Riley WJ, Schmidt GA, Sturm K, Yoshimura K, Irannejad P (2006) Stable water isotope simulation by current land-surface schemes: results of IPILPS phase 1. Global Planet Change 51(1–2):34–58CrossRefGoogle Scholar
  36. Hendricks MB, DePaolo DJ, Cohen RC (2000) Space and time variation of delta o-18 and delta d in precipitation: can paleotemperatnre be estimated from ice cores?. Global Biogeochem Cycles 14(3):851–861CrossRefGoogle Scholar
  37. Herweijer C, Seager R, Cook E (2006) North American droughts of the mid to late nineteenth century: a history, simulation and implication for Mediaeval drought. Holocene 16(2):159CrossRefGoogle Scholar
  38. Hoffmann G, Jouzel J, Masson V (2000) Stable water isotopes in atmospheric general circulation models. Hydrol Process 14(8):1385–1406CrossRefGoogle Scholar
  39. Ingraham NL, Taylor BE (1991) Light stable isotope systematics of large-scale hydrologic regimes in California and Nevada. Water Resour Res 27(1):77–90CrossRefGoogle Scholar
  40. Johnson KR, Ingram BL (2004) Spatial and temporal variability in the stable isotope systematics of modern precipitation in China: implications for paleoclimate reconstructions. Earth Planet Sci Lett 220(3–4):365–377CrossRefGoogle Scholar
  41. Jouzel J, Lorius C, Petit JR, Genthon C, Barkov NI, Kotlyakov VM, Petrov VM (1987) Vostok ice core—a continuous isotope temperature record over the last climatic cycle (160,000 years). Nature 329(6138):403–408CrossRefGoogle Scholar
  42. Kanamitsu M, Kumar A, Juang H, Schemm J, Wang W, Yang F, Hong S, Peng P, Chen W, Moorthi S et al (2002) NCEP dynamical seasonal forecast system 2000. Bull Am Meteorol Soc 83(7):1019–1038CrossRefGoogle Scholar
  43. Kavanaugh J, Cuffey K (2003) Space and time variation of d18 o and dd in Antarctic precipitation revisited. Global Biogeochem Cycles 17(1):1017CrossRefGoogle Scholar
  44. Kelley M (2003) Water tracers and the hydrologic cycle in a GCM. Graduate School of Arts and Sciences, Doctor of Philosophy, 340Google Scholar
  45. Lawrence JR, Gedzelman SD, White JWC, Smiley D, Lazov P (1982) Storm trajectories in eastern-United-States D/H isotopic composition of precipitation. Nature 296(5858):638–640CrossRefGoogle Scholar
  46. Lee JE, Fung I (2008) "Amount effect” of water isotopes and quantitative analysis of post-condensation processes. Hydrol Process 22(1):1–8CrossRefGoogle Scholar
  47. Lee JE, Fung I, DePaolo DJ, Henning CC (2007) Analysis of the global distribution of water isotopes using the NCAR atmospheric general circulation model. J Geophys Res Atmos 112(D16):D16306CrossRefGoogle Scholar
  48. Lee JH, Feng XH, Posmentier ES, Faiia AM, Taylor S (2009) Stable isotopic exchange rate constant between snow and liquid water. Chem Geol 260(1–2):57–62CrossRefGoogle Scholar
  49. Majoube M (1971) Oxygen-18 and deuterium fractionation between water and steam. Journal De Chimie Physique Et De Physico-Chimie Biologique 68(10):1423–1436Google Scholar
  50. Mann ME, Zhang ZH, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni FB (2009) Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326(5957):1256–1260CrossRefGoogle Scholar
  51. Merlivat L (1978) Molecular diffusivities of H2 16O, HD16O, and H2 18O in gases. J Chem Phys 69:2864–2871CrossRefGoogle Scholar
  52. Noone D (2008) The influence of midlatitude and tropical overturning circulation on the isotopic composition of atmospheric water vapor and Antarctic precipitation. J Geophys Res 113:D04102CrossRefGoogle Scholar
  53. Noone D, Simmonds I (2002) Associations between delta o-18 of water and climate parameters in a simulation of atmospheric circulation for 1979–95. J Clim 15(22):3150–3169CrossRefGoogle Scholar
  54. Pfahl S, Wernli H (2008) Air parcel trajectory analysis of stable isotopes in water vapor in the eastern Mediterranean. J Geophys Res 113(D20):D20104CrossRefGoogle Scholar
  55. Rind D, Chandler M, Lerner J, Martinson DG, Yuan X (2001) Climate response to basin-specific changes in latitudinal temperature gradients and implications for sea ice variability. J Geophys Res Atmos 106(D17):20161–20173CrossRefGoogle Scholar
  56. Risi C, Bony S, Vimeux F (2008a) Influence of convective processes on the isotopic composition (delta o-18 and delta d) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. J Geophys Res Atmos 113(D19):D19306CrossRefGoogle Scholar
  57. Risi C, Bony S, Vimeux F, Descroix L, Ibrahim B, Lebreton E, Mamadou I, Sultan B (2008b) What controls the isotopic composition of the african monsoon precipitation? insights from event-based precipitation collected during the 2006 amma field campaign. Geophys Res Lett 35(24):L24808CrossRefGoogle Scholar
  58. Risi C, Bony S, Vimeux F, Jouzel J (2010) Water-stable isotopes in the LMDZ4 general circulation model: model evaluation for present-day and past climates and applications to climatic interpretations of tropical isotopic records. J Geophys Res 115(D12):D12118CrossRefGoogle Scholar
  59. Rozanski K, Sonntag C (1982) Vertical distribution of deuterium in atmospheric water vapour. Tellus 34(1):135–141CrossRefGoogle Scholar
  60. Schneider D, Noone D (2007) Spatial covariance of water isotope records in a global network of ice cores spanning twentieth-century climate change. J Geophys Res 112(D18):D18105CrossRefGoogle Scholar
  61. Schneider M, Yoshimura K, Hase H, Blumenstock T (2010) The ground-based FTIR network's potential for investigating the atmospheric water cycle. Atmos Chem Phys 10:3427–3442Google Scholar
  62. Schneider T, O’Gorman PA, Levine XJ (2010) Water vapor and the dynamics of climate changes. Rev Geophys 48(30)Google Scholar
  63. Seager R, Ting MF, Held I, Kushnir Y, Lu J, Vecchi G, Huang HP, Harnik N, Leetmaa A, Lau NC, Li CH, Velez J, Naik N (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316(5828):1181–1184CrossRefGoogle Scholar
  64. Sharp ZD, Atudorei V, Durakiewicz T (2001) A rapid method for determination of hydrogen and oxygen isotope ratios from water and hydrous minerals. Chem Geol 178(1–4):197–210CrossRefGoogle Scholar
  65. Sjostrom D, Welker J (2009) The influence of air mass source on the seasonal isotopic composition of precipitation, eastern USA. J Geochem Explor 102(3):103–112CrossRefGoogle Scholar
  66. Smith GI, Friedman I, Gleason JD, Warden A (1992) Stable isotope composition of waters in southeastern California—2. Groundwaters and their relation to modern precipitation. J Geophys Res Atmos 97(D5):5813–5823Google Scholar
  67. Stewart MK (1975) Stable isotope fractionation due to evaporation and isotopic-exchange of falling waterdrops—applications to atmospheric processes and evaporation of lakes. J Geophys Res 80(9):1133–1146CrossRefGoogle Scholar
  68. Sturm C, Zhang Q, Noone D (2010) An introduction to stable water isotopes in climate models: benefits of forward proxy modelling for paleoclimatology. Clim Past 6:115–129CrossRefGoogle Scholar
  69. Trenberth KE, Dai AG, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84(9):1205–1218CrossRefGoogle Scholar
  70. Trenberth KE, Smith L, Qian TT, Dai AG, Fasullo J (2007) Estimates of the global water budget and its annual cycle using observational and model data. J Hydrometeorol 8(4):758–769CrossRefGoogle Scholar
  71. Vachon R, Welker J, White J, Vaughn B (2010) Moisture source temperatures and precipitation δ18O-temperature relationships across the United States. Water Resour Res 46(7):W07523CrossRefGoogle Scholar
  72. Vachon R, White J, Gutmann E, Welker J (2007) Amount-weighted annual isotopic (δ18O) values are affected by the seasonality of precipitation: a sensitivity study. Geophys Res Lett 34(21):L21707CrossRefGoogle Scholar
  73. Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441(7089):73–76CrossRefGoogle Scholar
  74. Welker JM (2000) Isotopic (delta o-18) characteristics of weekly precipitation collected across the usa: an initial analysis with application to water source studies. Hydrol Process 14(8):1449–1464CrossRefGoogle Scholar
  75. White JWC, Barlow LK, Fisher D, Grootes P, Jouzel J, Johnsen SJ, Stuiver M, Clausen H (1997) The climate signal in the stable isotopes of snow from Summit, Greenland: results of comparisons with modern climate observations. J Geophys Res Oceans 102(C12):26425–26439CrossRefGoogle Scholar
  76. Worden J, Bowman K, Noone D, Beer R, Clough S, Eldering A, Fisher B, Goldman A, Gunson M, Herman R et al (2006) Tropospheric emission spectrometer observations of the tropospheric HDO/H2O ratio: estimation approach and characterization. J Geophys Res 111(D16):D16309CrossRefGoogle Scholar
  77. Worden J, Noone D, Bowman K, TES Team (2007) Importance of rain evaporation and continental convection in the tropical water cycle. Nature 445(7127):528–532Google Scholar
  78. Wright WE, Long A, Comrie AC, Leavitt SW, Cavazos T, Eastoe C (2001) Monsoonal moisture sources revealed using temperature, precipitation, and precipitation stable isotope timeseries. Geophys Res Lett 28(5):787–790CrossRefGoogle Scholar
  79. Yamanaka T, Shimada J, Miyaoka K (2002) Footprint analysis using event-based isotope data for identifying source area of precipitated water. J Geophys Res 107(D22):4624CrossRefGoogle Scholar
  80. Yin J (2005) A consistent poleward shift of the storm tracks in simulation of 21st century climate. Geophys Res Lett 32(8), 10.1029/2005GL023684Google Scholar
  81. Yoshimura K, Kanamitsu M (2008) Dynamical global downscaling of global reanalysis. Mon Weather Rev 136:2983CrossRefGoogle Scholar
  82. Yoshimura K, Kanamitsu M, Dettinger M (2010) Regional downscaling for stable water isotopes: a case study of an atmospheric river event. J Geophys Res 115:D18114Google Scholar
  83. Yoshimura K, Kanamitsu M, Noone D, Oki T (2008) Historical isotope simulation using reanalysis atmospheric data. J Geophys Res 113(D19):D19108CrossRefGoogle Scholar
  84. Zhao H, Moore G (2006) Reduction in Himalayan snow accumulation and weakening of the trade winds over the pacific since the 1840s. Geophys Res Lett 33(5):L17709CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • M. Berkelhammer
    • 1
  • L. Stott
    • 2
  • K. Yoshimura
    • 3
    • 6
  • K. Johnson
    • 4
  • A. Sinha
    • 5
  1. 1.Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA
  2. 2.Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Center for Climate System ResearchUniversity of TokyoTokyoJapan
  4. 4.Earth Systems ScienceUniversity of CaliforniaIrvineUSA
  5. 5.Department of Earth SciencesCalifornia State UniversityDominguez HillsUSA
  6. 6.Scripps Institute of OceanographyUniversity of CaliforniaSan Diego La JollaUSA

Personalised recommendations