Climate Dynamics

, Volume 39, Issue 7–8, pp 1859–1884 | Cite as

Future projections of the surface heat and water budgets of the Mediterranean Sea in an ensemble of coupled atmosphere–ocean regional climate models

  • C. DuboisEmail author
  • S. Somot
  • S. Calmanti
  • A. Carillo
  • M. Déqué
  • A. Dell’Aquilla
  • A. Elizalde
  • S. Gualdi
  • D. Jacob
  • B. L’Hévéder
  • L. Li
  • P. Oddo
  • G. Sannino
  • E. Scoccimarro
  • F. Sevault


Within the CIRCE project “Climate change and Impact Research: the Mediterranean Environment”, an ensemble of high resolution coupled atmosphere–ocean regional climate models (AORCMs) are used to simulate the Mediterranean climate for the period 1950–2050. For the first time, realistic net surface air-sea fluxes are obtained. The sea surface temperature (SST) variability is consistent with the atmospheric forcing above it and oceanic constraints. The surface fluxes respond to external forcing under a warming climate and show an equivalent trend in all models. This study focuses on the present day and on the evolution of the heat and water budget over the Mediterranean Sea under the SRES-A1B scenario. On the contrary to previous studies, the net total heat budget is negative over the present period in all AORCMs and satisfies the heat closure budget controlled by a net positive heat gain at the strait of Gibraltar in the present climate. Under climate change scenario, some models predict a warming of the Mediterranean Sea from the ocean surface (positive net heat flux) in addition to the positive flux at the strait of Gibraltar for the 2021–2050 period. The shortwave and latent flux are increasing and the longwave and sensible fluxes are decreasing compared to the 1961–1990 period due to a reduction of the cloud cover and an increase in greenhouse gases (GHGs) and SSTs over the 2021–2050 period. The AORCMs provide a good estimates of the water budget with a drying of the region during the twenty-first century. For the ensemble mean, he decrease in precipitation and runoff is about 10 and 15% respectively and the increase in evaporation is much weaker, about 2% compared to the 1961–1990 period which confirm results obtained in recent studies. Despite a clear consistency in the trends and results between the models, this study also underlines important differences in the model set-ups, methodology and choices of some physical parameters inducing some difference in the various air-sea fluxes. An evaluation of the uncertainty sources and possible improvement for future generation of AORCMs highlights the importance of the parameterisation of the ocean albedo, rivers and cloud cover.


Mediterranean Sea Heat and water budget Climate change 



The authors would like to thank to CIRCE partners from making the data and some diagnostics available for this study. The financial support of this work has been provided by the European Project CIRCE: Integrated Project Climate Change and Impact Research: the Mediterranean Environment, under contract No. 036961. This work is also part of the HyMeX program. We would like to thank W. Ludwig and E. Stanev for providing us with river runoff and Black Sea dataset respectively. We also thank J.-L. Dufresne and G. Jordà for useful discussions about the Gibraltar and surface heat balance. We are grateful to Marc Lucas for a careful reading of the manuscript. The authors thank also the two anonymous reviewers for useful comments.


  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeor 4:1147–1167CrossRefGoogle Scholar
  2. Andersson A, Bakan S, Fennig K, Grassl H, Klepp C, Schulz J (2007) Hamburg ocean atmosphere parameters and fluxes from satellite data—HOAPS-3—monthly mean. World Data Center for ClimateGoogle Scholar
  3. Artale V, Calmanti S, Malanotte-Rizzoli P, Pisacane G, Rupolo W, Tsimplis M (2005) Mediterranean climate variability. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Elsevier, pp 282–323Google Scholar
  4. Artale V, Calmanti S, Carillo A, Dell’Aquila A, Hermann M, Pisacane G, Ruti PM, Sannino G, Striglia MV, Giorgi F, Bi X, Pal JS, Rauscher S (2009) An atmosphere-ocean regional climate model for the mediterranean area: assessment of a present climate simulation. Clim Dyn 35:721–740CrossRefGoogle Scholar
  5. Artegiani A, Paschini E, Russo A, Bregant D, Raicich F, Pinardi N (1997a) The Adriatic Sea general circulation. Part I: air-sea interactions and water mass structure. J Phys Oceano 27:1514Google Scholar
  6. Artegiani A, Paschini E, Russo A, Bregant D, Raicich F, Pinardi N (1997b) The Adriatic Sea general circulation. Part II: Baroclinic circulation structure. J Phys Oceano 27:1532Google Scholar
  7. Bärring L, Laprise R (eds) (2005) High-resolution climate modelling: assessment, added value and applications. Extended Abstracts of a WMO/WCRP-sponsored regional-scale climate modelling Workshop, 29 March–2 April 2004, Lund (Sweden). Lund University electronic reports in physical geography, 132 pp. (
  8. Baschek B, Send U, Garcia de la Fuente J, Candela J (2001) Transport estimates in the strait of Gibraltar with a tidal inverse model. J Geophys Res 112:31033–31044CrossRefGoogle Scholar
  9. Berry DI, Kent EC (2009) A new air-sea interaction gridded dataset from ICOADS with uncertainty estimates. Bull Am Meteor Soc 90:645–656CrossRefGoogle Scholar
  10. Béthoux J (1979) Budgets of the Mediterranean Sea. Their dependence on the local climate and on the characteristics of the Atlantic waters. Oceanol Acta 2(2):157–163Google Scholar
  11. Bethoux JP, Gentili B (1999) Functioning of the Mediterranean Sea: past and present changes related to freshwater input and climate changes. J Mar Syst 20:33–47Google Scholar
  12. Béthoux J, Gentili B, Taillez D (1999) Warming and freshwater budget change in the Mediterranean since the 1940 s, their possible relation to the greenhouse effect. Geophys Res Lett 25:1023–1026CrossRefGoogle Scholar
  13. Beuvier J, Sevault F, Herrmann M, Kontoyiannis H, Ludwig W, Rixen E, Stanev E, Béranger K, Somot S (2010) Modelling the Mediterranean Sea interannual variability over the last 40 years: focus on the eastern Mediterranean transient (EMT). J Geophys Res 115(C08017). doi: 10.1029/2009JC005950
  14. Bignami F, Marullo S, Santoleri R, Schiano ME (1995) Longwave radiation budget in the Mediterranean Sea. J Geophys Res 100(C2):2501–2514. doi: 10.1029/94JC02496 CrossRefGoogle Scholar
  15. Bryden HL, Kinder TH (1991) Steady two layer exchange through the strait of Gibraltar. Deep-Sea Res 38(Suppl. 1A):445–464Google Scholar
  16. Bryden HL, Candela J, Kinder TH (1994) Exchange through the strait of Gibraltar. Prog Oceanogr 33:201–248CrossRefGoogle Scholar
  17. Buck AL (1981) New equations for computing vapor pressure and enhancement factor. J Appl Meteorol 20:1527–1532Google Scholar
  18. Bunker AF, Charnock H, Goldsmith RA (1982) A note of the heat balance of the Mediterranean and Red Seas. J Mar Res 40(suppl):73–84Google Scholar
  19. Calmanti S, Artale V, Sutera A (2006) North Atlantic MOC variability and the Mediterranean Outflow: a box-model study. Tellus Ser A Dyn Meteorol Oceanogr 58(3):416–423. doi: 10.1111/j.1600-0870.2006.00176.x CrossRefGoogle Scholar
  20. Candela PJ (2001) Mediterranean water and global circulation. In: Gerold S, John Church y John Gould (eds) Ocean circulation and climate. Observing and modelling the global ocean, vol. 77. Publicado (PA: CPOFH20001-2001)Google Scholar
  21. Chen W, Zhihong J, Laurent L, Pascal Y (2011) Simulation of regional climate change under the IPCC A2 scenario in southeast China. Clim Dyn 36(3–4):491–507CrossRefGoogle Scholar
  22. Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 81(Supplement 1):7–30. doi: 10.1007/s10584-006-9210-7 CrossRefGoogle Scholar
  23. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  24. Dell’Aquila A, Calmanti S, Ruti P, Struglia MV, Pisacane G, Carillo A, Sannino G (2012) Impacts of seasonal cycle fluctuations in an A1B scenario over the Euro-Mediterranean. Clim Res. doi: 10.3354/cr01037
  25. Déqué M, Piedelievre J-P (1995) High-resolution climate simulation over Europe. Clim Dyn 11:321–339CrossRefGoogle Scholar
  26. Drobinsky P, Ducrocq V (eds) (2008) HYMEX: white book.
  27. Dubois C, Sanchez E, Braun A, Soot S (2010) A gathering of observed air-sea surface fluxes over the Mediterranean Sea. Note de centre n°113, Météo-FranceGoogle Scholar
  28. Dümenil Gates L, Hagemann S, Golz C (2000) Observed historical discharge data from major rivers for climate model validation. Internal report 307. Max Planck Institute for MeteorologyGoogle Scholar
  29. Egyptian Ministry of Water Resources and Irrigation (2002) Adopted measures to face major challenges in the Egyptian water sector, paper presented at the 3rd world water forum. World Water Council, KyotoGoogle Scholar
  30. Elguindi N, Somot S, Déqué M, Ludwig W (2009) Climate change evolution of the hydrological balance of the Mediterranean, Black and Caspian Seas: impact of climate model resolution. Clim Dyn (in revision)Google Scholar
  31. Elizalde A, Sein D, Mikolajewick U, Jacob D (2010) Technical report: atmosphere–ocean–hydrology coupled regional climate model. Max Planck Institute for MeteorologyGoogle Scholar
  32. García Lafuente J, Sánchez Román A, Díaz G, del Río G, Sannino JC, Garrido Sánchez (2007) Recent observations of seasonal variability of the Mediterranean outflow in the strait of Gibraltar. J Geophys Res 112:C10005. doi: 10.1029/2006JC003992 CrossRefGoogle Scholar
  33. Gibelin A-L, Déqué M (2003) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim Dyn 20:327–339Google Scholar
  34. Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33(8):L08707CrossRefGoogle Scholar
  35. Giorgi F, Bates GT (1989) The climatological skill of a regional model over complex terrain. Mon Weather Rev 117:2325–2347CrossRefGoogle Scholar
  36. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global and Planterary Change 63(2–3):90–104CrossRefGoogle Scholar
  37. Gualdi S, Somot S, Li L, Artale V, Adani M, Bellucci A, Braun A, Calmanti S, Carillo A, Dell’Aquilla A, Déqué M, Dubois C, Elizalde A, Harzallah A, L’Hévéder B, May W, Oddo P, Ruti P, Sanna A, Sannino G, Sevault F, Scoccimarro E, Navarra A (2011) The CIRCE simulations: a new set of regional climate change projections performed with a realistic representation of the Mediterranean Sea, BAMS (in revision)Google Scholar
  38. Habets F, Boone A, Champeaux JL, Etchevers P, Franchistéguy L, Leblois E, Ledoux E, Le Moigne P, Martin E, Morel S, Noilhan J, Quintana Segui P, Rousset-Regimbeau F, Viennot P (2008) The SAFRAN-ISBA-MODCOU hydrometeorological model applied over France. J Geophys Res 113:D06113. doi: 10.1029/2007JD008548 CrossRefGoogle Scholar
  39. Hagemann S, Dümenil L (1998) A parameterization of the lateral waterflow for the global scale. Clim Dyn 14(1):17–31CrossRefGoogle Scholar
  40. Hagemann S, Jacob D (2007) Gradient in the climate change signal of European discharge predicted by a multi-model ensemble. Clim Change (Prudence Special Issue) 81(Supplement 1):309–327Google Scholar
  41. Herrmann M, Somot S (2008) Relevance of ERA40 dynamical downscaling for modeling deep convection in the North-Western Mediterranean Sea. Geophys Res Let 35:L04607CrossRefGoogle Scholar
  42. Herrmann M, Bouffard J, Béranger K (2009) Monitoring open-ocean deep convection from space. Geophys Res Lett 36:L03606. doi: 10.1029/2008GL036422 CrossRefGoogle Scholar
  43. Herrmann M et al (2011) Representation of spatial and temporal variability of daily wind speed and of intense wind events over the Mediterranean Sea using dynamical downscaling: impact of the regional climate model configuration. Nat Hazards Earth Syst Sci 11:1983–2001. doi: 10.5194/nhess-11-1983-2011 CrossRefGoogle Scholar
  44. Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne J-L, Fairhead L, Filiberti M-A, Friedlingstein P, Grandpeix J-Y, Krinner G, LeVan P, Li et Z-XF (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Lott Clim Dyn 27:787–813CrossRefGoogle Scholar
  45. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University PressGoogle Scholar
  46. Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73CrossRefGoogle Scholar
  47. Jacob D, Bärring L, Christensen OB, Christensen JH, de Castro M, Déqué M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sànchez ES, Schär C, Seneviratne SI, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: design of the experiments and model performance. Clim Change 81(suppl. 1):31–52. doi: 10.1007/s10584-006-9213-4 CrossRefGoogle Scholar
  48. Kothe S, Ahrens B (2010) On the radiation budget in regional climate simulations for West Africa. J Geophys Res 115:D23120. doi: 10.1029/2010JD014331 CrossRefGoogle Scholar
  49. Lascaratos A, Williams R, Tragou E (1993) A mixed layer study of the formation of levantine intermediate water. J Geophys Res 98(C8):14739–14749CrossRefGoogle Scholar
  50. Li ZX (1999) Ensemble atmospheric GCM simulation of climate interannual variability from 1979 to 1994. J Clim 12:986–1001CrossRefGoogle Scholar
  51. Li L, Bozec A, Somot S, Béranger K, Bouruet-Aubertot P, Sevault F, Crépon M (2006) Regional atmospheric, marine processes and climate modelling (chapter 7). In: Lionello P, Malanotte P, Boscolo R (eds) Mediterranean climate variability. Elsevier B.V., Amsterdam, pp 373–397Google Scholar
  52. Li L, Casado A, Dell’Aquila A, Dubois C, Elizalde A, L’Hévéder B, Lionello P, Sevault F, Somot S, Ruti P, Zampieri M (2011) Modelling of the Mediterranean climate system (chapter 7) In: Lionello P (ed) Mediterranean climate from past to future, Elsevier B.V., Amsterdam (in revision)Google Scholar
  53. Lionello P, Malanotte-Rizzoli P, Alpert P, Artale V, Bocolo R, Garcia-Herrera R, Kull C, Li L, Luterbacher J, Oguz T, May W, Planton S, Rodo X, Theocharis A, Trigo R, Tsimplis M, Ulbrich U (2006) MEDCLIVAR: Mediterranean CLImate VARiability project. PAGES News/CLIVAR Exchanges 13:3–5Google Scholar
  54. Ludwig W, Dumont E, Meybeck M, Heussner S (2009) River discharges of water and nutrients to the Mediterranean Sea: major drivers for ecosystem changes during past and future decades? Prog Oceanogr 80:199–217CrossRefGoogle Scholar
  55. Madec G (2008) “NEMO ocean engine”. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27 ISSN No 1288-1619Google Scholar
  56. Mariotti A (2010) Recent changes in Mediterranean water cycle: a pathway toward long-term regional hydroclimatic change? J Climate 23(6):1513–1525. doi: 10.1175/2009JCLI3251.1 CrossRefGoogle Scholar
  57. Mariotti A, Zeng N, Yoon J, Artale V, Navarra A, Alpert P, Li L (2008) Mediterranean water cycle changes: transition to drier 21st century conditions in observations and CMIP3 simulations. Env Res Lett. doi: 10.1088/1748-9326/3/044001
  58. McDonald AM, Candela J, Bryden HL (1994) In: La Violette (ed) An estimate of the net heat transport flux trough the strait of Gibraltar, seasonal and interannual variability of the Western Mediterranean Sea, Coastal Estuarine Stud., vol 46, AGU, Washington, DC, pp 12–32Google Scholar
  59. MEDAR/MEDATLAS Group (2002) MEDAR/MEDATLAS 2002 Database. Cruise inventory, observed and analysed data of temperature and bio-chemical parameters, 4CdromGoogle Scholar
  60. MEDOC Group (1970) Observation of formation of deep water in the Mediterranean Sea, 1969. Nature 227:1037–1040CrossRefGoogle Scholar
  61. Mikolajewicz U (2011) Modeling mediterranean ocean climate of the last glacial maximum. Clim Past 7(1):161–180CrossRefGoogle Scholar
  62. Millot C, Candela J, Fuda J-L, Tber Y (2006) Large warming and salinification of the Mediterranean outflow due to changes in its composition. Deep-Sea Res 53(4):656–666CrossRefGoogle Scholar
  63. Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) IPCC special report on emissions scenarios. Cambridge University Press, Cambridge, p 599Google Scholar
  64. Nixon SW (2003) Replacing the Nile: are anthropogenic nutrients providing the fertility once brought to the Mediterranean by a great river? Ambio 32(1):30–39Google Scholar
  65. Oddo P, Adani M, Pinardi N, Fratianni C, Tonani M, Pettenuzzo D (2009) A nested Atlantic-Mediterranean Sea general circulation model for operational forecasting. Ocean Sci Discuss 6:1093–1127CrossRefGoogle Scholar
  66. Oki YC, Sud (1998) Design of total runoff integrating pathways (TRIP)—a global river channel network. Earth Interact 2Google Scholar
  67. Perry K (2001) Sea winds on QuikSCAT level 3 daily, gridded ocean wind vectors (JPL sea winds Project) guide documentGoogle Scholar
  68. Pettenuzzo D, Large WG, Pinardi N (2010) On the corrections of ERA-40 surface flux products consistent with the Mediterranean heat and water budgets and the connection between basin surface total heat flux and NAO. J Geophys Res 115:C06022. doi: 10.1029/2009JC005631 CrossRefGoogle Scholar
  69. Potter R, Lozier S (2004) On the warming and salinification of the Mediterranean Outflow waters in the North Atlantic. Geophys Res Lett 31:L01202. doi: 10.1029/2003GL018161 CrossRefGoogle Scholar
  70. Reid JL (1979) On the contribution of the Mediterranean Sea outflow to the Norweigian-Greenland Sea. Deep-Sea Res 26(1979):1199–1223CrossRefGoogle Scholar
  71. Rixen M et al (2005) The Western Mediterranean deep water: a proxy for climate change. Geophys Res Lett 32(L12608):1–4Google Scholar
  72. Robinson AR, Leslie WG, Theocharis A, Lascaratos A (2001) Mediterranean sea circulation In: Encyclopedia of ocean sciences. Academic Press, pp 1689–1706Google Scholar
  73. Roether W, Manca BB, Klein B, Bregant D, Georgopoulos D, Beitzel V, Kovacevic V, Luchetta A (1996) Recent changes in Eastern Mediterranean deep waters. Science 271:333–335CrossRefGoogle Scholar
  74. Romanou A, Tselioudis G, Zerefos CS, Clayson C-A, Curry JA, Andersson A (2010) Evaporation-precipitation variability over the Mediterranean and the Black Seas from satellite and reanalysis estimates. J Clim 23:5268–5287. doi: 10.1175/2010JCLI3525.1 CrossRefGoogle Scholar
  75. Ruti PM, Somot S, Dubois C, Calmanti S, Ahrens B, Alias A, Aznar R, Bartholy J, Bastin S, Béranger K, Brauch J, Calvet J-C, Carillo A, Decharme B, Dell’Aquila A, Djurdjevic V, Drobinski P, Elizalde-Arellano A, Gaertner M, Galán P, Gallardo C, Giorgi F, Gualdi S, Harzallah A, Herrmann M, Jacob D, Khodayar S, Krichak S, Lebeaupin C, L’Heveder B, Li L, Liguro G, Lionello P, Onol B, Rajkovic B, Sannino G, Sevault F (in preparation) MED-CORDEX initiative for Mediterranean climate studies. EOSGoogle Scholar
  76. Sanchez-Garrido JC, Sannino G, Liberti L, Garcia Lafuente J, Pratt LJ (2011) Numerical modelling of three-dimentiona stratified tidal flow over Camarinal Sill, strait of Gibraltar. J Geophys Res (in press). doi: 10.1029/2011JC007093
  77. Sanchez-Gomez E, Somot S, Mariotti A (2009) Future changes in the Mediterranean water budget projected by an ensemble of regional climate models. Geophys Res Lett 36:L21401. doi: 10.1029/2009GL040120 CrossRefGoogle Scholar
  78. Sanchez-Gomez E, Somot S, Josey SA, Dubois C, Elguindi N, Déqué M (2011) Evaluation of the Mediterranean Sea water and heat budgets as simulated by an ensemble of high resolution regional climate models. Clim Dyn 37:2067–2086. doi: 10.1007/s00382-011-1012-6 CrossRefGoogle Scholar
  79. Sannino G, Bargagli A, Artale V (2004) Numerical modeling of the semidiurnal tidal exchange through the strait of Gibraltar. J Geophys Res 109:C05011. doi: 10.1029/2003JC002057 CrossRefGoogle Scholar
  80. Sannino G, Carillo A, Artale V (2007) Three-layer view of transports and hydraulics in the strait of Gibraltar: a three-dimensional model study. J Geophys Res 112:C03010. doi: 10.1029/2006JC003717 CrossRefGoogle Scholar
  81. Sannino G, Pratt L, Carillo A (2009a) Hydraulic criticality of the exchange flow through the strait of Gibraltar. J Phys Oceanogr 39(11):2779–2799CrossRefGoogle Scholar
  82. Sannino G, Herrmann M, Carillo A, Rupolo V, Ruggiero V, Artale V, Heimbach P (2009b) An eddy-permitting model of the Mediterranean Sea with a two-way grid refinement at Gibraltar. Ocean Model 30(1):56–72. doi: 10.1016/j.ocemod.2009.06.002 CrossRefGoogle Scholar
  83. Schott F, Visbeck M, Send U, Fischer J, Stramma L, Desaubies Y (1996) Observations of deep convection in the Gulf of Lions, Northern Mediterranean, during the Winter of 1991/92. J Phys Oceanogr 26:505–524Google Scholar
  84. Scoccimarro E, Gualdi S, Bellucci A, Sanna A, Fogli PG, Manzini E, Vichi M, Oddo P, Navarra A (2011) Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J Climate 24:4368–4384. doi: 10.1175/2011JCLI4104.1 CrossRefGoogle Scholar
  85. Sevault F, Somot S, Beuvier J (2009) A regional version of the NEMO ocean engine on the Mediterranean Sea: NEMOMED8 user’s guide. Note de centre n°107 du CNRM, Groupe de Météorologie de Grande Echelle et ClimatGoogle Scholar
  86. Skliris N, Lascaratos A (2004) Impacts of the Nile River damming on the thermohaline circulation and water mass characteristics of the Mediterranean Sea. J Mar Sys 52(1–4):121–143CrossRefGoogle Scholar
  87. Skliris N, Sofianos S, Lascaratos A (2007) Hydrological changes in the Mediterranean Sea in relation to changes in the freshwater budget: a numerical modelling study. J Mar Syst 65:400–416CrossRefGoogle Scholar
  88. Somot S, Sevault F, Déqué M (2006) Transient climate change scenario simulation of the Mediterranean Sea for the 21st century using a high-resolution ocean circulation model. Clim Dyn 27(7–8):851–879. doi: 10.1007/s00382-006-0167-z CrossRefGoogle Scholar
  89. Somot S, Sevault F, Déqué M, Crépon M (2008) 21st century climate change scenario for the Mediterranean using a coupled atmosphere-ocean regional climate model. Global Planetary Change 63(2–3):112–126. doi: 10.1016/j.gloplacha.2007.10.003 CrossRefGoogle Scholar
  90. Sotillo MG, Ratsimandresy AW, Carretero JC, Bentamy A, Valero F, Gonzalez-Rouco F (2005) A high-resolution 44-year atmospheric hindcast for the Mediterranean Basin: contribution to the regional improvement of global reanalysis. Clim Dyn. doi: 10.1007/s00382-005-0030-7
  91. Soto-Navarro J, Criado-Aldeanueva F, García-Lafuente J, Sánchez-Román A (2010) Estimation of the Atlantic inflow through the strait of Gibraltar from climatological and in situ data. J Geophys Res 115:C10023. doi: 10.1029/2010JC006302 CrossRefGoogle Scholar
  92. Stanev E, Peneva EL (2002) Regional sea level response to global climatic change: Black Sea examples. Global Planet Change 32:33–47CrossRefGoogle Scholar
  93. Stanev EV, Le Traon P-Y, Peneva EL (2000) Sea level variations and their dependency on meteorological and hydrological forcing: analysis of altimeter and surface data for the Black sea. J Geophys Res 105(C7):17203–17216CrossRefGoogle Scholar
  94. Struglia MV, Mariotti A, Filograsso A (2004) River discharge into the Mediterranean Sea: climatology and aspect of the observed variability. J Clim 17:4740–4751CrossRefGoogle Scholar
  95. Tsimplis MN, Bryden HL (2000) Estimation of the transport through the strait of Gibraltar. Deep Sea Res I 47:2219–2242CrossRefGoogle Scholar
  96. Tsimplis M, Zervakis V, Josey S, Peneva EL, Struglia MV, Stanev E, Teocharis A, Lionello P, Malanotte-Rizzoli P, Artale V, Tragou E, Oguz T (2005) Changes in the oceanography of the Mediterranean Sea and their link to climate variability. In: Lonello P, Malanotte-Rizzoli P, Boscolo R (eds) Elsevier, pp 226–281Google Scholar
  97. Valcke S (2006) OASIS3 user guide (oasis3_prism_2-5). PRISM support initiative report no 3. CERFACS, Toulouse, p 64Google Scholar
  98. Van Leer B (1979) Towards the ultimate conservative difference scheme, V. A Second Order Sequel to Godunov’s Method. J Com Phys 32:101–136CrossRefGoogle Scholar
  99. Vörösmarty C, Fekete B, Tucker B (1996) Global river discharge. RivDis, UNESCO, International Hydrological Programm Global Hydrological Archive and Analysis Systems, ParisGoogle Scholar
  100. Wüst G (1961) On the vertical circulation of the Mediterranean Sea. J Geophys Res v.66(10):3261–3271CrossRefGoogle Scholar
  101. Xie P, Arkin PA (1997) Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteor Soc 78:2539–2558CrossRefGoogle Scholar
  102. Xoplaki E, Luterbacher J, González-Rouco JF (2006) Mediterranean summer temperature and winter precipitation, large scale dynamics, trends. Il Nuovo Cimento 29:45–54Google Scholar
  103. Yu L, Jin X, Weller RA (2008) Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, OAFlux Project Technical Report. OA-2008-01. Woods Hole, Massachusetts, [PDF]Google Scholar
  104. Zerefos CS, Eleftheratos K, Meleti C, Kazadzis S, Romanou A, Ichoku C, Tselioudis G, Bais A (2009) Solar dimming and brightening over Thessaloniki, Greece, and Beijing, China. Tellus 61B:657–665. doi: 10.1111/j.1600-0889.2009.00425 Google Scholar
  105. Zervakis V, Georgopoulos D, Karageorgis A, Theocharis A (2004) On the response of the Aegean Sea to climatic variability: a review. Int J Climatol 24:1845–1858CrossRefGoogle Scholar
  106. Zou Liwei, Zhou Tianjun, Laurent Li, Zhang Jie (2010) East china summer rainfall variability of 1958–2000: dynamical downscaling with a variable-resolution agcm. J Clim 23:6394–6408. doi: 10.1175/2010JCLI3689.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • C. Dubois
    • 1
    Email author
  • S. Somot
    • 1
  • S. Calmanti
    • 3
  • A. Carillo
    • 3
  • M. Déqué
    • 1
  • A. Dell’Aquilla
    • 3
  • A. Elizalde
    • 4
  • S. Gualdi
    • 5
  • D. Jacob
    • 4
  • B. L’Hévéder
    • 2
  • L. Li
    • 2
  • P. Oddo
    • 5
  • G. Sannino
    • 3
  • E. Scoccimarro
    • 5
  • F. Sevault
    • 1
  1. 1.CNRM-GAME, Météo-France, CNRSToulouseFrance
  2. 2.Laboratoire de Météorologie DynamiqueParisFrance
  3. 3.ENEARomeItaly
  4. 4.Max Planck Institute for MeteorologyHamburgGermany
  5. 5.INGVBolognaItaly

Personalised recommendations