Climate Dynamics

, Volume 39, Issue 3–4, pp 531–555 | Cite as

Influences of tropical–extratropical interaction on the multidecadal AMOC variability in the NCEP climate forecast system

  • Bohua Huang
  • Zeng-Zhen Hu
  • Edwin K. Schneider
  • Zhaohua Wu
  • Yan Xue
  • Barry Klinger


We have examined the mechanisms of a multidecadal oscillation of the Atlantic Meridional Overturning Circulation (AMOC) in a 335-year simulation of the Climate Forecast System (CFS), the climate prediction model developed at the National Centers for Environmental Prediction (NCEP). Both the mean and seasonal cycle of the AMOC in the CFS are generally consistent with observation-based estimates with a maximum northward volume transport of 16 Sv (106 m3/s) near 35°N at 1.2 km. The annual mean AMOC shows an intermittent quasi 30-year oscillation. Its dominant structure includes a deep anomalous overturning cell (referred to as the anomalous AMOC) with amplitude of 0.6 Sv near 35°N and an anomalous subtropical cell (STC) of shallow overturning spanning across the equator. The mechanism for the oscillation includes a positive feedback between the anomalous AMOC and surface wind stress anomalies in mid-latitudes and a negative feedback between the anomalous STC and AMOC. A strong AMOC is associated with warm sea surface temperature anomaly (SSTA) centered near 45°N, which generates an anticyclonic easterly surface wind anomaly. This anticyclonic wind anomaly enhances the regional downwelling and reinforces the anomalous AMOC. In the mean time, a wind-evaporation-SST (WES) feedback extends the warm SSTA to the tropics and induces a cyclonic wind stress anomaly there, which drives a tropical upwelling and weakens the STC north of the equator. The STC anomaly, in turn, drives a cold upper ocean heat content anomaly (HCA) in the northern tropical Atlantic and weakens the meridional heat transport from the tropics to the mid-latitude through an anomalous southward western boundary current. The anomalous STC transports cold HCA from the subtropics to the mid-latitudes, weakening the mid-latitude deep overturning.


Atlantic Meridional Overturning Circulation Climate Forecast System Wind Stress Anomaly Meridional Heat Transport Atlantic Meridional Overturning Circulation Variability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Drs. J. Shukla, J. Kinter and A. Kumar for their support and guidance of this project. We thank two anonymous reviewers for their constructive comments and suggestions. We also thank Drs. Boyin Huang, Shaoqing Zhang, Sirpa Häkkinen, Young-Gyu Park and Caihong Wen for beneficiary discussions and useful suggestions. We are grateful to Drs. C. Stan and V. Krishnamurthy for reviewing and editing an early version of the manuscript carefully and for making many constructive suggestions. Bohua Huang is supported by the NOAA CVP Program (NA07OAR4310310). Zhaohua Wu is supported by the National Science Foundation project AGS-1139479. The CFS simulation was carried out on the NCAR supercomputing system.


  1. Alvarez-Garcia F, Latif M, Biastoch A (2008) On multidecadal and quasi-decadal North Atlantic variability. J Clim 21:3433–3452CrossRefGoogle Scholar
  2. Balmaseda MA, Smith GC, Haines K, Anderson D, Palmer TN, Vidard A (2007) Historical reconstruction of the Atlantic Meridional overturning circulation from the ECMWF operational ocean reanalysis. Geophys Res Lett 34:L23615. doi: 10.1029/2007GL031645 CrossRefGoogle Scholar
  3. Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean. In: Eighth symposium on integrated observing and assimilation systems for atmosphere, oceans, and land surface, AMS 84th annual meeting, Washington State Convention and Trade Center, Seattle, Washington, 11–15Google Scholar
  4. Böning CW, Scheinert M, Dengg J, Biastoch A, Funk A (2006) Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning. Geophys Res Lett 33:L21S01. doi: 10.1029/2006GL026906
  5. Broccoli AJ, Dahl KA, Stouffer RJ (2006) Response of the ITCZ to Northern Hemisphere cooling. Geophys Res Lett 33:L01702. doi: 10.1029/2005GL024546 CrossRefGoogle Scholar
  6. Chang P, et al (2008) Oceanic link between abrupt changes in the North Atlantic Ocean and the African monsoon. Nat Geosci 1:444–448Google Scholar
  7. Chang P, Ji L, Li H (1997) A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions. Nature 385:516–518CrossRefGoogle Scholar
  8. Cheng W, Bleck R, Rooth C (2004) Multi-decadal thermohaline variability in an ocean–atmosphere general circulation model. Clim Dyn 22:573–590Google Scholar
  9. Chiang JCH, Bitz CM (2005) Influence of high latitude ice cover on the marine intertropical convergence zone. Clim Dyn 25:477–496CrossRefGoogle Scholar
  10. Chiang JCH, Cheng W, Bitz CM (2008) Fast teleconnections to the tropical Atlantic sector from Atlantic thermohaline adjustment. Geophys Res Lett 35:L07704. doi: 10.1029/2008GL033292 CrossRefGoogle Scholar
  11. Czaja A, Marshall J (2001) Observations of atmosphere–ocean coupling in the North Atlantic. Q J R Meteorol Soc 127:1893–1916CrossRefGoogle Scholar
  12. Dahl KA, Broccoli AJ, Stouffer RJ (2005) Assessing the role of North Atlantic freshwater forcing in millennial scale climate variability: a tropical Atlantic perspective. Clim Dyn 24:325–346CrossRefGoogle Scholar
  13. Danabasoglu G (2008) On multidecadal variability of the Atlantic meridional overturning circulation in the community climate system model version 3. J Clim 21:5524–5544CrossRefGoogle Scholar
  14. Delworth TL, Greatbatch RJ (2000) Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J Clim 13:1481–1495CrossRefGoogle Scholar
  15. Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16:661–676CrossRefGoogle Scholar
  16. Delworth TL, Manabe S, Stouffer RJ (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J Clim 6:1993–2011CrossRefGoogle Scholar
  17. Delworth TL, Zhang R, Mann ME (2007) Decadal to centennial variability of the Atlantic from observations and models. In: Schmittner A, Chiang J, Hemmings S (eds) Ocean circulation: mechanisms and impacts. Geophy Monogr Ser, vol 173. pp 131–148Google Scholar
  18. Dong BW, Sutton RT (2002) Adjustment of the coupled ocean–atmosphere system to a sudden change in the thermohaline circulation. Geophys Res Lett 29:1728. doi: 10.1029/2002GL015229 CrossRefGoogle Scholar
  19. Dong BW, Sutton RT (2005) Mechanism of interdecadal thermohaline circulation variability in a coupled ocean–atmoshere GCM. J Clim 18:1117–1135CrossRefGoogle Scholar
  20. Eden C, Willebrand J (2000) Mechanism of interannual to decadal variability of the North Atlantic circulation. J Clim 14:2266–2280CrossRefGoogle Scholar
  21. Enfield DB, Mestas-Nunez AM PJ, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys Res Lett 28:2077–2080CrossRefGoogle Scholar
  22. Folland CK, Palmer TN, Parker DE (1986) Sahel rainfall and worldwide sea temperatures. Nature 320:602–607CrossRefGoogle Scholar
  23. Frankcombe LM, Dijkstra HA (2009) Coherent multidecadal variability in North Atlantic sea level. Geophys Res Lett 36:L15 604. doi: 10.1029/2009GL039455
  24. Frankcombe LM, von der Heydt A, Dijstra HA (2010) North Atlantic multidecadal climate variability: an investigation of dominant time scales and processes. J Clim 23:3626–3638CrossRefGoogle Scholar
  25. Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–457CrossRefGoogle Scholar
  26. Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155CrossRefGoogle Scholar
  27. Ghil M, Allen MR, Dettinger MD, Ide K, Kondrashov D, Mann ME, Robertson AW, Saunders A, Tian Y, Varadi F, Yiou P (2002) Advanced spectral methods for climatic time series. Rev Geophys 40:1003. doi: 10.1029/2000RG000092 CrossRefGoogle Scholar
  28. Gray ST, Graumlich LJ, Betancourt JL, Pedersen GT (2004) A tree-ring based reconstruction of the Atlantic multidecadal oscillation since 1567 A.D. Geophys Res Lett 31:L12205. doi: 10.1029/2004GL019932
  29. Häkkinen S, Rhines PB (2009) Shifting surface currents in the northern North Atlantic Ocean. J Geophys Res 114:C04005. doi: 10.1029/2008JC004883 CrossRefGoogle Scholar
  30. Hu Z–Z, Nitta T (1996) Wavelet analysis of summer rainfall over North China and India and SOI using 1891–1992 data. J Meteorol Soc Jpn 74:833–844Google Scholar
  31. Hu A, Otto-Bliesner BL, Meehl GA, Han W, Morrill C, Brady EC, Briegleb B (2008) Response of thermohaline circulation to freshwater forcing under present day and LGM conditions. J Clim 21:2239–2258CrossRefGoogle Scholar
  32. Hu Z–Z, Huang B, Kinter III JL, Wu Z, Kumar A (2011) Connection of stratospheric QBO with global atmospheric general circulation and tropical SST. Part II: interdecadal variations. Clim Dyn. doi: 10.1007/s00382-011-1073-6 (published online)
  33. Huang NE, et al (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A 454:903–993Google Scholar
  34. Huang NE, Wu Z (2008) A review on Hilbert-Huang transform: the method and its applications on geophysical studies. Rev Geophys 46:RG2006. doi:  10.1029/2007RG000228
  35. Huang B, Hu Z–Z, Kinter III JL, Wu Z, Kumar A (2011a) Connection of stratospheric QBO with global atmospheric general circulation and tropical SST. Part I: methodology and composite life cycle. Clim Dyn. doi:  10.1007/s00382-011-1250-7
  36. Huang B, Xue Y, Kumar A, Behringer DW (2011b) AMOC variations in 1979–2008 simulated by NCEP operational ocean data assimilation system. Clim Dyn (in press)Google Scholar
  37. Huck T, Colin de Verdière A, Weaver AJ (1999) Interdecadal variability of the thermohaline circulation in box-ocean models forced by fixed surface fluxes. J Phys Oceanogr 29:865–892CrossRefGoogle Scholar
  38. Huck T, Vallis GK, Colin de Verdière A (2001) On the robustness of the interdecadal modes of the thermohaline circulation. J Clim 14:940–963CrossRefGoogle Scholar
  39. Jochum M, Malanotte-Rizzoli P (2001) Influence of the meridional overturning circulation on tropical–subtropical pathways. J Phys Oceanogr 31:1313–1323CrossRefGoogle Scholar
  40. Johns WE, Baringer MO, Beal LM, Cunningham SA, Kanzow T, Bryden HL, Hirschi JJM, Marotzke J, Meinen CS, Shaw B, Curry R (2011) Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. J Clim 24:2429–2449Google Scholar
  41. Johnson H, Marshall DP (2002) A theory for the surface Atlantic response to thermohaline variability. J Phys Oceangr 32:1121–1132CrossRefGoogle Scholar
  42. Jungclaus JH, Haak H, Latif M, Mikolajewicz U (2005) Arctic–North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18:4013–4031CrossRefGoogle Scholar
  43. Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP–DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643CrossRefGoogle Scholar
  44. Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288:1984–1985CrossRefGoogle Scholar
  45. Klinger B, Cruz C (2009) Decadal response of global circulation to Southern Ocean zonal wind stress perturbation. J Phys Oceanogr 39:1888–1904CrossRefGoogle Scholar
  46. Knight JT, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi: 1029/2005GL024233 CrossRefGoogle Scholar
  47. Kushnir Y (1994) Interdecadal variations in North Atlantic Sea surface temperature and associated atmospheric conditions. J Clim 7:142–157CrossRefGoogle Scholar
  48. Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–403CrossRefGoogle Scholar
  49. Latif M, Collins M, Pohlmann H, Keenlyside N (2006) A review of predictability studies of the Atlantic sector climate on decadal time scales. J Clim 19:5971–5987CrossRefGoogle Scholar
  50. Lindzen RS, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci 44:2418–2436CrossRefGoogle Scholar
  51. Liu Z (1994) A simple model of the mass exchange between the subtropical and tropical ocean. J Phys Oceanogr 24:1153–1165CrossRefGoogle Scholar
  52. Lumpkin R, Speer K (2003) Large-scale vertical and horizontal circulation in the North Atlantic Ocean. J Phys Oceanogr 33:1902–1920CrossRefGoogle Scholar
  53. Lumpkin R, Speer K (2007) Global ocean meridional overturning. J Phys Oceanogr 37:2550–2562CrossRefGoogle Scholar
  54. Mahajan S, Saravanan R, Chang P (2010) Free and forced variability of the tropical Atlantic Ocean: role of the wind-evaporation-sea surface temperature feedback. J Clim 23:5958–5977CrossRefGoogle Scholar
  55. Manabe S, Stouffer RJ (1988) Two stable equilibria of a coupled ocean–atmosphere model. J Clim 1:841–866CrossRefGoogle Scholar
  56. Marshall J, Johnson H, Goodman J (2001) A study of the interaction of the North Atlantic Oscillation with the ocean circulation. J Clim 14:1399–1421CrossRefGoogle Scholar
  57. McCreary JP, Lu P (1994) Interaction between the subtropical and equatorial ocean circulations: the subtropical cell. J Phys Oceanogr 24:466–497Google Scholar
  58. Moron V, Vautard R, Ghil M (1998) Trends, interdecadal and interannual oscillations in global sea-surface temperatures. Clim Dyn 14:545–569CrossRefGoogle Scholar
  59. Ou H-S (2011) A minimal model of the Atlantic multidecadal variability: its genesis and predictability. Clim Dyn. doi: 10.1007/s00382-011-1007-3 (published online)
  60. Pacanowski RC, Griffies SM (1998) MOM 3.0 manual. NOAA/GFDL
  61. Park Y-G, Hwang JH (2009) Local advective mechanism for interdecadal variability in circulations driven by constant surface heat fluxes in idealized basins. J Oceanogr 65:549–566CrossRefGoogle Scholar
  62. Plaut G, Vautard R (1994) Spells of low-frequency oscillations and weather regimes in the Northern Hemisphere. J Atmos Sci 51:210–236CrossRefGoogle Scholar
  63. Saha S, et al (2006) The NCEP climate forecast system. J Clim 19:3483–3517Google Scholar
  64. Schopf PS, Suarez MJ (1988) Vacillations in a coupled ocean–atmosphere model. J Atmos Sci 45:549–566CrossRefGoogle Scholar
  65. Schott FA, McCreary JP, Johnson GC (2004) Shallow overturning circulations of the tropical-subtropical oceans, in earth climate: the ocean–atmosphere interaction, AGU, pp 261–304Google Scholar
  66. Semenov VA, Latif M, Dommenget D, Keenlyside NS, Strehz A, Martin T, Park W (2010) The impact of North Atlantic-Arctic multidecadal variability on northern hemisphere surface air temperature. J Clim 23:5668–5677CrossRefGoogle Scholar
  67. Sévellec F, Fedorov AV (2011) An interdecadal oscillatory eigenmode of the Atlantic meridional overturning circulation in a realistic ocean GCM. J Clim, submittedGoogle Scholar
  68. Sime LC, Stevens DP, Heywood KJ, Oliver KIC (2006) A decomposition of the Atlantic meridional overturning. J Phys Oceanogr 36:2253–2270CrossRefGoogle Scholar
  69. Stouffer RJ, et al (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387Google Scholar
  70. Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45:3283–3287CrossRefGoogle Scholar
  71. Sutton RW, Hodson DLR (2007) Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J Clim 20:891–907CrossRefGoogle Scholar
  72. Talley LD, Reid JL, Robbins PE (2003) Data-based meridional overturning stream function for the global ocean. J Clim 16:3213–3226CrossRefGoogle Scholar
  73. Te Raa L, Dijkstra HD (2002) Instability of the thermohaline ocean circulation on interdecadal timescales. J Phys Oceanogr 32:138–160CrossRefGoogle Scholar
  74. Timmermann A, Latif M, Voss R, Grötzner A (1998) Northern hemispheric interdecadal variability: a coupled air–sea mode. J Clim 12:2607–2624Google Scholar
  75. Timmermann A, An S, Krebs U, Goosse H (2005) ENSO suppression due to a weakening of the North Atlantic thermohaline circulation. J Clim 18:3122–3139CrossRefGoogle Scholar
  76. Ting M, Kushnir Y, Seager R, Li C (2010) Atlantic multidecadal variability and its climate impacts in CMIP3 models and observations. In: 2010 US AMOC annual meeting, Miami, FL.
  77. Vellinga M, Wood R (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim Change 54:251–267CrossRefGoogle Scholar
  78. Vellinga M, Wu P (2004) Low-latitude freshwater influences on centennial variability of the Atlantic thermohaline circulation. J Clim 17:4498–4511CrossRefGoogle Scholar
  79. Weaver AJ, Sarachik ES (1991) Evidence for decadal variability in an ocean general circulation model: an advective mechanism. Atmos-Ocean 29:197–231CrossRefGoogle Scholar
  80. Weaver AJ, Valcke S (1998) On the variability of the thermohaline circulation in the GFDL coupled model. J Clim 11:759–767CrossRefGoogle Scholar
  81. Wen C, Chang P, Saravanan R (2010) Effect of the Atlantic overturning circulation changes on the tropical Atlantic sea-surface temperature variability: a 2–1/2 layer reduced gravity ocean model study. J Clim 23:312–332CrossRefGoogle Scholar
  82. Weng W, Neelin JD (1998) On the role of ocean–atmosphere interaction in midlatitude interdecadal variability. Geophys Res Lett 25:167–170CrossRefGoogle Scholar
  83. Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1:1–41CrossRefGoogle Scholar
  84. Wu Z, Huang NE, Wallace JM, Smoliak BV, Chen X (2011) On the time-varying trend in global-mean surface temperature. Clim Dyn (revised)Google Scholar
  85. Xie S-P (1999) A dynamic ocean–atmosphere model of the tropical Atlantic decadal variability. J Clim 12:64–70CrossRefGoogle Scholar
  86. Zhang R (2007) Anticorrelated multidecadal variations between surface and subsurface tropical North Atlantic. Geophy Res Lett 34:L12713. doi: 10.1029/2007GL030225
  87. Zhang R, Delworth TL (2005) Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J Clim 18:1853–1860CrossRefGoogle Scholar
  88. Zhu X, Jungclaus J (2008) Interdecadal variability of the meridional overturning circulation as an ocean internal mode. Clim Dyn 31:731–741. doi: 10.1007/s00382-008-0383-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Bohua Huang
    • 1
    • 2
  • Zeng-Zhen Hu
    • 3
  • Edwin K. Schneider
    • 1
    • 2
  • Zhaohua Wu
    • 4
  • Yan Xue
    • 3
  • Barry Klinger
    • 1
    • 2
  1. 1.Department of Atmospheric, Oceanic, and Earth Sciences, College of ScienceGorge Mason UniversityFairfaxUSA
  2. 2.Center for Ocean-Land-Atmosphere StudiesInstitute of Global Environment and SocietyCalvertonUSA
  3. 3.Climate Prediction CenterNational Centers for Environmental Prediction/NOAACamp SpringsUSA
  4. 4.Department of Earth, Ocean, and Atmospheric Science, Center for Ocean-Atmospheric Prediction StudiesFlorida State UniversityTallahasseeUSA

Personalised recommendations