Climate Dynamics

, Volume 39, Issue 3–4, pp 811–826 | Cite as

The effect of Arabian Sea optical properties on SST biases and the South Asian summer monsoon in a coupled GCM

  • A. G. Turner
  • M. Joshi
  • E. S. Robertson
  • S. J. Woolnough


This study examines the effect of seasonally varying chlorophyll on the climate of the Arabian Sea and South Asian monsoon. The effect of such seasonality on the radiative properties of the upper ocean is often a missing process in coupled general circulation models and its large amplitude in the region makes it a pertinent choice for study to determine any impact on systematic biases in the mean and seasonality of the Arabian Sea. In this study we examine the effects of incorporating a seasonal cycle in chlorophyll due to phytoplankton blooms in the UK Met Office coupled atmosphere-ocean GCM HadCM3. This is achieved by performing experiments in which the optical properties of water in the Arabian Sea—a key signal of the semi-annual cycle of phytoplankton blooms in the region—are calculated from a chlorophyll climatology derived from Sea-viewing Wide Field-of-View Sensor (SeaWiFS) data. The SeaWiFS chlorophyll is prescribed in annual mean and seasonally-varying experiments. In response to the chlorophyll bloom in late spring, biases in mixed layer depth are reduced by up to 50% and the surface is warmed, leading to increases in monsoon rainfall during the onset period. However when the monsoons are fully established in boreal winter and summer and there are strong surface winds and a deep mixed layer, biases in the mixed layer depth are reduced but the surface undergoes cooling. The seasonality of the response of SST to chlorophyll is found to depend on the relative depth of the mixed layer to that of the anomalous penetration depth of solar fluxes. Thus the inclusion of the effects of chlorophyll on radiative properties of the upper ocean acts to reduce biases in mixed layer depth and increase seasonality in SST.


Arabian Sea Monsoon Chlorophyll Model bias Mixed layer South Asia 



A. G. Turner is funded by a NERC Fellowship number NE/H015655/1; M. Joshi and S. J. Woolnough were funded by the National Centre for Atmospheric Science Climate directorate, a NERC collaborative centre. E. S. Robertson was funded under a NERC-tied studentship grant number NE/D010810/1. Computing resources for running the Hadley Centre model were provided by HECToR. The authors thank the two anonymous reviewers and the Editor, Susanna Corti, whose comments have helped to improve this manuscript.


  1. Anderson W, Gnanadesikan A, Wittenberg A (2009) Regional impacts of ocean color on tropical Pacific variability. Ocean Sci Ocean Eng 5(3):313–327CrossRefGoogle Scholar
  2. Annamalai H, Hamilton K, Sperber KR (2007) The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J Clim 20(6):1071–1092CrossRefGoogle Scholar
  3. Conkright ME, Gregg WW (2003) Comparison of global chlorophyll climatologies: In situ, CZCS, Blended in situ-CZCS and SeaWiFS. Int J Remote Sens 24(5):969–991CrossRefGoogle Scholar
  4. de Boyer Montégut CD, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res Oceans 109(C12), C12003. doi: 10.1029/2004JC002378
  5. Desa E, Suresh T, Matondkar SGP (2001) Sea truth validation of SeaWiFS ocean colour sensor in the coastal waters of the Eastern Arabian Sea. Curr Sci 80(7):854–860Google Scholar
  6. Foreman SJ (1990) Ocean model mixed layer formulation. Unified Model Documentation Paper 41, UK Met OfficeGoogle Scholar
  7. Gnanadesikan A, Anderson WG (2009) Ocean water clarity and the ocean general circulation in a coupled climate model. J Phys Oceanogr 39(2):314–332CrossRefGoogle Scholar
  8. Gnanadesikan A, Emanuel K, Vecchi GA, Anderson WG, Hallberg R (2010) How ocean color can steer Pacific tropical cyclones. Geophys Res Lett 37, L18802. doi: 10.1029/2010GL044514
  9. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16(2–3):147–168CrossRefGoogle Scholar
  10. Gregg WW, Casey NW (2004) Global and regional evaluation of the SeaWiFS chlorophyll data set. Remote Sens Environ 93(4):463–479CrossRefGoogle Scholar
  11. Gregg WW, Casey NW (2007) Sampling biases in MODIS and SeaWiFS ocean chlorophyll data. Remote Sens Environ 111(1):25–35CrossRefGoogle Scholar
  12. Izumo T, de Boyer Montégut CD, Luo JJ, Behera SK, Masson S, Yamagata T (2008) The role of the Western Arabian Sea upwelling in Indian monsoon rainfall variability. J Clim 21(21):5603–5623CrossRefGoogle Scholar
  13. Jerlov NG (1968) Optical oceanography. Elsevier, AmsterdamGoogle Scholar
  14. Ju JH, Slingo J (1995) The Asian Summer Monsoon and ENSO. Q J Roy Meteorol Soc 121(525):1133–1168CrossRefGoogle Scholar
  15. Kraus EB, Turner JS (1967) A one dimensional model of the seasonal thermocline. Part II. The general theory and its consequences. Tellus 19(1):98–106. doi: 10.1111/j.2153-3490.1967.tb01462.x Google Scholar
  16. Krishnan R, C Z, Sugi M (2000) Dynamics of breaks in the Indian summer monsoon. J Atmospheric Sci 57:1354–1372CrossRefGoogle Scholar
  17. Lengaigne M, Menkes C, Aumont O, Gorgues T, Bopp L, Andre JM, Madec G (2007) Influence of the oceanic biology on the tropical Pacific climate in a coupled general circulation model. Clim Dyn 28(5):503–516CrossRefGoogle Scholar
  18. Levine RC, Turner AG (2011) Dependence of Indian monsoon rainfall on moisture fluxes across the Arabian Sea and the impact of coupled model sea surface temperature biases. Clim Dyn. doi: 10.1007/s00382-011-1096-z
  19. Lévy M, Shankar D, Andre JM, Shenoi SSC, Durand F, de Boyer Montégut C (2007) Basin-wide seasonal evolution of the Indian Ocean’s phytoplankton blooms. J Geophys Res Oceans 112(C12), C12014. doi: 10.1029/2007JC004090
  20. Lin PF, Liu HL, Mang XH (2007) Sensitivity of the upper ocean temperature and circulation in the equatorial Pacific to solar radiation penetration due to phytoplankton. Adv Atmos Sci 24:765–780CrossRefGoogle Scholar
  21. Marathayil D, Shaffrey LC, Turner AG (2011) Examination of Arabian Sea SST biases in the HiGEM high resolution coupled climate model and the CMIP3 multi-model dataset. Geophys Res Lett (in preparation)Google Scholar
  22. Meehl GA, Covey C, Delworth T, Latif M, McAveney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394CrossRefGoogle Scholar
  23. Nakamoto S, Kumar SP, Oberhuber JM, Muneyama K, Frouin R (2000) Chlorophyll modulation of sea surface temperature in the Arabian Sea in a mixed-layer isopycnal general circulation model. Geophys Res Lett 27(6):747–750CrossRefGoogle Scholar
  24. Nakamoto S, Kumar SP, Oberhuber JM, Ishizaka J, Muneyama K, Frouin R (2001) Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model. Geophys Res Lett 28(10):2021–2024CrossRefGoogle Scholar
  25. Ohlmann JC (2003) Ocean radiant heating in climate models. J Clim 16(9):1337–1351CrossRefGoogle Scholar
  26. Parthasarathy B, Munot AA, Kothawale DR (1994) All-India Monthly and Seasonal Rainfall Series—1871–1993. Theor Appl Climatol 49(4):217–224CrossRefGoogle Scholar
  27. Paulson CA, Simpson JJ (1977) Irradiance measurements in upper ocean. J Phys Oceanogr 7(6):952–956CrossRefGoogle Scholar
  28. Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Clim Dyn 16(2–3):123–146CrossRefGoogle Scholar
  29. Rajeevan M, Bhate J, Kale JD, Lal B (2006) High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells. Curr Sci 91:296–306Google Scholar
  30. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmospheres 108(D14), 4407. doi: 10.1029/2002JD002670
  31. Robertson ES (2011) Biophysical coupling in the ocean mixed layer. Ph.D. thesis, submitted, Department of Meteorology, University of ReadingGoogle Scholar
  32. Sathyendranath S, Gouveia AD, Shetye SR, Ravindran P, Platt T (1991) Biological-control of surface-temperature in the Arabian Sea. Nat Biotechnol 349(6304):54–56CrossRefGoogle Scholar
  33. Schott FA, McCreary JP (2001) The monsoon circulation of the Indian Ocean. Prog Oceanogr 51(1):1–123CrossRefGoogle Scholar
  34. Shell KM, Frouin R, Nakamoto S, Somerville RCJ (2003) Atmospheric response to solar radiation absorbed by phytoplankton. J Geophys Res Atmospheres 108(D15), 4445. doi: 10.1029/2003JD003440
  35. Slingo J, Spencer H, Hoskins B, Berrisford P, Black E (2005) The meteorology of the Western Indian Ocean, and the influence of the east African highlands. Phil Trans Roy Soc A—Math Phys Eng Sci 363(1826):25–42CrossRefGoogle Scholar
  36. Turner AG, Slingo JM (2009) Subseasonal extremes of precipitation and active-break cycles of the Indian summer monsoon in a climate-change scenario. Q J Roy Meteorol Soc 135(640):549–567CrossRefGoogle Scholar
  37. Turner AG, Inness PM, Slingo JM (2005) The role of the basic state in the ENSO-monsoon relationship and implications for predictability. Q J Roy Meteorol Soc 131(607):781–804CrossRefGoogle Scholar
  38. Turner AG, Inness PA, Slingo JM (2007) The effect of doubled CO2 and model basic state biases on the monsoon-ENSO system. I: Mean response and interannual variability. Q J Roy Meteorol Soc 133(626):1143–1157CrossRefGoogle Scholar
  39. Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Bechtold VD, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen P, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J Roy Meteorol Soc 131(612):2961–3012 Part BGoogle Scholar
  40. Vecchi GA, Harrison DE (2004) Interannual Indian rainfall variability and Indian ocean sea surface temperature anomalies. In: Wang C, Xie SP, Carton JA (eds), Earth’s Climate: the Ocean-Atmosphere Interaction. AGU Monograph, vol 147, pp 247–259. Conference on Ocean-Atmosphere Interaction and Climate Variability, December 2002, San Francisco, CAGoogle Scholar
  41. Wetzel P, Maier-Reimer E, Botzet M, Jungclaus J, Keenlyside N, Latif M (2006) Effects of ocean biology on the penetrative radiation in a coupled climate model. J Clim 19(16):3973–3987CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. G. Turner
    • 1
  • M. Joshi
    • 1
  • E. S. Robertson
    • 1
  • S. J. Woolnough
    • 1
  1. 1.NCAS-Climate, Walker Institute for Climate System Research, Department of MeteorologyUniversity of ReadingReadingUK

Personalised recommendations