Advertisement

Climate Dynamics

, Volume 39, Issue 3–4, pp 681–707 | Cite as

Impact of intra-daily SST variability on ENSO characteristics in a coupled model

  • Sébastien Masson
  • Pascal Terray
  • Gurvan Madec
  • Jing-Jia Luo
  • Toshio Yamagata
  • Keiko Takahashi
Article

Abstract

This paper explores the impact of intra-daily Sea Surface Temperature (SST) variability on the tropical large-scale climate variability and differentiates it from the response of the system to the forcing of the solar diurnal cycle. Our methodology is based on a set of numerical experiments based on a fully global coupled ocean–atmosphere general circulation in which we alter (1) the frequency at which the atmosphere sees the SST variations and (2) the amplitude of the SST diurnal cycle. Our results highlight the complexity of the scale interactions existing between the intra-daily and inter-annual variability of the tropical climate system. Neglecting the SST intra-daily variability results, in our CGCM, to a systematic decrease of 15% of El Niño—Southern Oscillation (ENSO) amplitude. Furthermore, ENSO frequency and skewness are also significantly modified and are in better agreement with observations when SST intra-daily variability is directly taken into account in the coupling interface of our CGCM. These significant modifications of the SST interannual variability are not associated with any remarkable changes in the mean state or the seasonal variability. They can therefore not be explained by a rectification of the mean state as usually advocated in recent studies focusing on the diurnal cycle and its impact. Furthermore, we demonstrate that SST high frequency coupling is systematically associated with a strengthening of the air-sea feedbacks involved in ENSO physics: SST/sea level pressure (or Bjerknes) feedback, zonal wind/heat content (or Wyrtki) feedback, but also negative surface heat flux feedbacks. In our model, nearly all these results (excepted for SST skewness) are independent of the amplitude of the SST diurnal cycle suggesting that the systematic deterioration of the air-sea coupling by a daily exchange of SST information is cascading toward the major mode of tropical variability, i.e. ENSO.

Keywords

Diurnal cycle Coupled climate model El Niño-Southern Oscillation Ocean–atmosphere interactions 

Notes

Acknowledgments

This work is a part of the EU-Japan collaboration build around the SINTEX-F coupled model. It is also a contribution to the MOU between the Earth Simulator Center (ESC), CNRS and IFREMER. All the computationally expensive experiments analysed in the study were performed on the Earth simulator. Our sensitivity experiments with 301 levels in the ocean have been double thanks to the outstanding computational performances offered by this unique supercomputer. S. Masson and G. Madec were supported by ANR (INLOES project). P. Terray benefited from the financial support from the Indo-French CEFIPRA project (No. 3907/1). Many thanks to R. Benshila, C. Talandier, A. Caubel, E. Maisonnave, M.A. Foujols, C. Levy, Y.Meursedoif, F. Pinsard, C. Deltel, S. Denvil and P. Brochard who have come to the ESC to implement, optimize and run the simulations. Their visit at the ESC was greatly facilitated by the kind help of A. Kurita, R. Itakura, A. Toya and M.-E. Demory. Graphics have been prepared using the SAXO package of S. Masson.

References

  1. AchutaRao K, Sperber K (2002) Simulation of the El Niño Southern Oscillation: Results from the coupled model intercomparison project. Clim Dyn 19:191–209CrossRefGoogle Scholar
  2. Achutarao K, Sperber KR (2006) ENSO simulation in coupled ocean-atmosphere models: are the current models better? Clim Dyn 27:1–15CrossRefGoogle Scholar
  3. Alexander MA et al (2002) The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans. J Clim 15:2205–2231CrossRefGoogle Scholar
  4. An S-I, Wang B (2000) Interdecadal change of the structure of the ENSO mode and its impact on ENSO frequency. J Clim 13:2044–2055CrossRefGoogle Scholar
  5. Barnier B, Madec G, Penduff T, Molines J-M, Treguier A-M, Le Sommer J, Beckmann A, Biastoch A, Böning C et al (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn 56:543–567CrossRefGoogle Scholar
  6. Bellenger H, Duvel JP (2009) An analysis of ocean diurnal warm layers over tropical oceans. J Clim 22:3629–3646CrossRefGoogle Scholar
  7. Belmadani A, Dewitte B, An S-I (2010) ENSO feedbacks and associated time scales of variability in a multimodel ensemble. J Clim 23:3181–3204CrossRefGoogle Scholar
  8. Bernie DJ, Woolnough SJ, Slingo JM, Guilyardi E (2005) Modeling diurnal and intraseasonal variability of the ocean mixed layer. J Clim 18:1190–1202CrossRefGoogle Scholar
  9. Bernie DJ, Guilyardi E, Madec G, Slingo JM, Woolnough SJ (2007) Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 1: a diurnally forced OGCM. Clim Dyn 29:575–590CrossRefGoogle Scholar
  10. Bernie DJ, Guilyardi E, Madec G, Slingo JM, Woolnough SJ, Cole J (2008) Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 2: a diurnally coupled CGCM. Clim Dyn 31:909–925CrossRefGoogle Scholar
  11. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pa-cific. Mon Weather Rev 97:163–172CrossRefGoogle Scholar
  12. Bretherton C, Smith C, Wallace J (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560CrossRefGoogle Scholar
  13. Brown JN, Fedorov AV, Guilyardi E (2011) How well do coupled models replicate ocean energetics relevant to ENSO? Clim Dyn. doi: 10.1007/s00382-010-0926-8
  14. Burgers G, Stephenson DB (1999) The “normality” of El Niño. Geophys Res Lett 26(8):1027–1030. doi: 10.1029/1999GL900161 CrossRefGoogle Scholar
  15. Burgers G, Jin F-F, Oldenborgh GJ (2005) The simplest ENSO recharge oscillator. Geophys Res Lett 32:L13706. doi: 10.1029/2005GL022951 CrossRefGoogle Scholar
  16. Chelton Dudley B et al (2001) Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J Clim 14:1479–1498CrossRefGoogle Scholar
  17. Clarke AJ (1994) Why are surface equatorial winds anomalously westerly under anomalous large-scale convection? J Clim 7:1623–1627CrossRefGoogle Scholar
  18. Clayson CA, Weitlich D (2007) Variability of tropical diurnal sea surface temperature. J Clim 20:334–352CrossRefGoogle Scholar
  19. Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) A seasonal-trend decomposition procedure based on loess (with discussion). J Off Stat 6:3–73Google Scholar
  20. Collins M, An SI, Cai W, Ganachaud A, Guilyardi E, Jin FF, Jochum M, Lengaigne M, Power S, Timmermann A (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geosci 3:391–397CrossRefGoogle Scholar
  21. Danabasoglu G, Large WG, Tribbia JJ, Gent PR, Briegleb BP, McWilliams JC (2006) Diurnal coupling in the tropical oceans of CCSM3. J Clim 19:2347–2365CrossRefGoogle Scholar
  22. Davey M, Huddleston M, Sperber K, Braconnot P, Bryan F, Chen D, Colman R, Cooper C, Cubasch U, Delecluse P (2002) STOIC: a study of coupled model climatology and variability in tropical ocean regions. Clim Dyn 18:403–420CrossRefGoogle Scholar
  23. Delecluse P, Davey MK, Kitamura Y, Philander SGH, Suarez M, Bengtsson L (1998) Coupled general circulation modeling of the tropical Pacific. J Geophys Res 103:14CrossRefGoogle Scholar
  24. Diggle PJ (1990) Time series: a biostatistical introduction, Chap. 4. Clarendon Press, OxfordGoogle Scholar
  25. Fischer AS, Terray P, Delecluse P, Gualdi S, Guilyardi E (2005) Two independent triggers for the Indian Ocean dipole/zonal mode in a coupled GCM. J Clim 18:3428–3449CrossRefGoogle Scholar
  26. Gill AE (1980) Some simple solutions for the heat induced tropical circulation. Q J Meteorol Soc 106:447–462CrossRefGoogle Scholar
  27. Gualdi S, Guilyardi E, Navarra A, Masina S, Delecluse P (2003a) The interannual variability in the tropical Indian Ocean as simulated by a CGCM. Clim Dyn 20:567–582Google Scholar
  28. Gualdi S, Navarra A, Guilyardi E, Delecluse P (2003a) Assessment of the tropical Indo-Pacific climate in the SINTEX CGCM. Ann Geophys 46:1–26Google Scholar
  29. Guilyardi E (2006) El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Clim Dyn 26:329–348CrossRefGoogle Scholar
  30. Guilyardi E, Delecluse P, Gualdi S, Navarra A (2003) Mechanisms for ENSO phase change in a coupled GCM. J Clim 16:1141–1158CrossRefGoogle Scholar
  31. Guilyardi E, Gualdi S, Slingo J, Navarra A, Delecluse P (2004) Representing El Niño in coupled ocean–atmosphere GCMs: the dominant role of the atmospheric component. J Clim 17:4623–4629CrossRefGoogle Scholar
  32. Guilyardi E, Braconnot P, Jin FF, Kim ST, Kolasinski M, Li T, Musat I (2009a) Atmosphere feedbacks during ENSO in a coupled GCM with a modified atmospheric convection scheme. J Clim 22:5698–5718CrossRefGoogle Scholar
  33. Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C (2009b) UNDERSTANDING EL NIÑO IN OCEAN–ATMOSPHERE GENERAL CIRCULATION MODELS. Bull Amer Meteor Soc 90:325–340CrossRefGoogle Scholar
  34. Ham YG, Kug JS, Kang IS, Jin FF, Timmermann A (2010) Impact of diurnal atmosphere–ocean coupling on tropical climate simulations using a coupled GCM. Clim Dyn 34:905–917CrossRefGoogle Scholar
  35. Hasegawa T, Hanawa K (2003) Heat content variability related to ENSO events in the Pacific. J Phys Oceanogr 33:407–421CrossRefGoogle Scholar
  36. Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829CrossRefGoogle Scholar
  37. Jin F-F, Kim ST, Bejarano L (2006) A coupled-stability index for ENSO. Geophys Res Lett 33:L23708–L23718CrossRefGoogle Scholar
  38. Jin EK, Kinter JL, Wang B, Park CK, Kang IS, Kirtman BP, Kug JS, Kumar A, Luo JJ, Schemm J (2008) Current status of ENSO prediction skill in coupled ocean–atmosphere models. Clim Dyn 31:647–664CrossRefGoogle Scholar
  39. Jochum M, Danabasoglu G, Holland M, Kwon YO, Large WG (2008) Ocean viscosity and climate. J Geophys Res 113:C06017CrossRefGoogle Scholar
  40. Kawai Y, Wada A (2007) Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: a review. J Oceanogr 63:721–744CrossRefGoogle Scholar
  41. Kirtman BP (1997) Oceanic Rossby waves dynamics and the ENSO period in a coupled model. J Clim 10:1690–1704CrossRefGoogle Scholar
  42. Kug J-S, Sooraj K-P, Li T, Jin F-F (2010) Precursors of the El Niño/La Niña onset and their interrelationship. J Geophys Res 115:D05106. doi: 10.1029/2009JD012861 CrossRefGoogle Scholar
  43. Lin JL (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean-atmosphere feedback analysis. J Clim 20:4497–4525CrossRefGoogle Scholar
  44. Lloyd J, Guilyardi E, Weller H, Slingo J (2009) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Atmos Sci Lett 10:170–176CrossRefGoogle Scholar
  45. Lloyd J, Guilyardi E, Weller H (2011) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part II: using AMIP runs to understand the heat flux feedback mechanisms. Clim Dyn 37(7–8):1271–1292Google Scholar
  46. Luo JJ, Masson S, Behera S, Delecluse P, Gualdi S, Navarra A, Yamagata T (2003) South Pacific origin of the decadal ENSO-like variation as simulated by a coupled GCM. Geophys Res Lett 30:2250CrossRefGoogle Scholar
  47. Luo JJ, Masson S, Behera S, Shingu S, Yamagata T (2005a) Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J Clim 18:4474–4497CrossRefGoogle Scholar
  48. Luo JJ, Masson S, Roeckner E, Madec G, Yamagata T (2005b) Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J Clim 18:2344–2360CrossRefGoogle Scholar
  49. Luo JJ, Masson S, Behera SK, Yamagata T (2008) Extended ENSO predictions using a fully coupled ocean–atmosphere model. J Clim 21:84–93CrossRefGoogle Scholar
  50. Madec G (2008) NEMO ocean engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France. No 27. ISSN No 1288-1619Google Scholar
  51. Manganello JV, Huang B (2009) The influence of systematic errors in the Southeast Pacific on ENSO variability and prediction in a coupled GCM. Clim Dyn 32:1015–1034. doi: 10.1007/s00382-008-0407-5 CrossRefGoogle Scholar
  52. Masson S, Luo JJ, Madec G, Vialard J, Durand F, Gualdi S, Guilyardi E, Behera S, Delecluse P, et al. (2005) Impact of barrier layer on winter-spring variability of the southeastern Arabian Sea. Geophys Res Lett 32:L07703, 1–4Google Scholar
  53. Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteor Soc Jpn 44:25–43Google Scholar
  54. McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314:1740–1745CrossRefGoogle Scholar
  55. Meehl GA, Gent PR, Arblaster JM, Otto-Bliesner BL, Brady EC, Craig A (2001a) Factors that affect the amplitude of El Niño in global coupled climate models. Clim Dyn 17:515–526CrossRefGoogle Scholar
  56. Meehl GA, Lukas R, Kiladis GN, Wheeler M, Matthews A, Weickmann KM (2001b) A conceptual framework for time and space scale interactions in the climate system. Clim Dyn 17:753–775CrossRefGoogle Scholar
  57. Meinen CS, McPhaden MJ (2000) Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J Clim 13:3551–3559CrossRefGoogle Scholar
  58. Molines JM, Barnier B, Penduff T, Brodeau L, Treguier AM, Theetten S, Gurvan Madec (2006) Definition of the global 1/2° experiment with CORE interannual forcing, ORCA05-G50. LEGI report November 2006. LEGI-DRA-1-11-2006, http://www.ifremer.fr/lpo/drakkar/drakkar/configs/ORCA05/orca05_G50.pdf
  59. Morcrette J-J, Smith L, Fouquart Y (1986) Pressure and temperature dependence of the absorption in longwave radiation parameterizations. Beitr Phys Atmos 59:455–469Google Scholar
  60. Morissey ML (1990) An evaluation of ship data in the equatorial western Pacific. J Clim 3:99–112CrossRefGoogle Scholar
  61. Navarra A, Gualdi S, Masina S, Behera S, Luo JJ, Masson S, Guilyardi E, Delecluse P, Yamagata T (2008) Atmospheric horizontal resolution affects tropical climate variability in coupled models. J Clim 21:730–750CrossRefGoogle Scholar
  62. Neale RB, Richter JH, Jochum M (2008) The impact of convection on ENSO: from a delayed oscillator to a series of events. J Clim 21:5904–5924CrossRefGoogle Scholar
  63. Neelin JD, Dijkstra HA (1995) Ocean-atmosphere interaction and the tropical climatology. Part I: the angers of flux correction. J Clim 8:1325–1342CrossRefGoogle Scholar
  64. Nordeng TE (1994) Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. Technical Memorandum 206, ECMWF, Reading, UKGoogle Scholar
  65. Park W, Keenlyside N, Latif M, Ströh A, Redler R, Roeckner E, Madec G (2009) Tropical Pacific climate and its response to global warming in the Kiel climate model. J Clim 22:71–92CrossRefGoogle Scholar
  66. Philip SY, Collins M, van Oldenborgh GJ, van den Hurk B (2010) The role of atmosphere and ocean physical processes in ENSO in a perturbed physics coupled climate model. Ocean Sci 6:441–459CrossRefGoogle Scholar
  67. Politis DN (1998) Computer intensive methods in statistical analysis. IEEE Signal Process Mag 15:39–55CrossRefGoogle Scholar
  68. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  69. Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? Bull Am Meteorol Soc 89:303–311CrossRefGoogle Scholar
  70. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S et al (2003) The atmospheric general circulation model ECHAM5: Part 1: model description. Max-Planck-Institut für Meteorologie, HamburgGoogle Scholar
  71. Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2004) The atmospheric general circulation model ECHAM5 Part II: sensitivity of simulated climate to horizontal and vertical resolution. Max-Planck-Institute for Meteorology, MPI-Report 354Google Scholar
  72. Slingo J, Inness P, Neale R, Woolnough S, Yang G (2003) Scale interactions on diurnal toseasonal timescales and their relevanceto model systematic errors. Ann Geophys 46(1):139–155Google Scholar
  73. Sun DZ, Yu Y, Zhang T (2009) Tropical water vapor and cloud feedbacks in climate models: a further assessment using coupled simulations. J Clim 22(5):1287–1304CrossRefGoogle Scholar
  74. Terray P (2010) Southern Hemisphere extra-tropical forcing: a new paradigm for El Niño-Southern Oscillation. Clim Dyn. doi: 10.1007/s00382-010-0825-z
  75. Terray P, Guilyardi E, Fischer AS, Delecluse P (2005) Dynamics of the Indian monsoon and ENSO relationships in the SINTEX global coupled model. Clim Dyn 24:145–168CrossRefGoogle Scholar
  76. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800CrossRefGoogle Scholar
  77. Timmermann R, Goosse H, Madec G, Fichefet T, Ethe C, Duliere V (2005) On the representation of high latitude processes in the ORCA-LIM global coupled sea ice-ocean model. Ocean Model 8(1–2):175–201CrossRefGoogle Scholar
  78. Tozuka T, Luo JJ, Masson S, Behera SK, Yamagata T (2005) Annual ENSO simulated in a coupled ocean-atmosphere model. Dyn Atmos Oceans 39:41–60CrossRefGoogle Scholar
  79. Trenberth KE (1997) The definition of El Niño. Bull Amer Met Soc 78:2771–2777CrossRefGoogle Scholar
  80. Trenberth KE, Caron JM (2000) The Southern Oscillation revisited: sea level pressures, surface temperatures, and precipitation. J Clim 13:4358–4365CrossRefGoogle Scholar
  81. Trenberth KE et al (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103:14291–14324CrossRefGoogle Scholar
  82. Valcke (2006) OASIS3 user guide (prism_2-5). CERFACS technical report TR/CMGC/06/73, PRISM report no. 3, ToulouseGoogle Scholar
  83. Van Oldenborgh GJ, Philip SY, Collins M (2005) El Niño in a changing climate: a multi-model study. Ocean Sci 1: 81–95, SRef-ID: 1812-0792/os/2005-1-8Google Scholar
  84. Vialard J, Foltz G, McPhaden M, Duvel JP, de Boyer Montégut C (2008) Strong Indian Ocean sea surface temperature signals associated with the Madden-Julian Oscillation in late 2007 and early 2008. Geophys Res Lett 35:L19608, 1–5Google Scholar
  85. Vialard J, Duvel JP, Mcphaden MJ, Bouruet-Aubertot P, Ward B, Key E, Bourras D, Weller R, Minnett P et al (2009) Cirene: air–sea interactions in the Seychelles–Chagos thermocline ridge region. Bull Am Meteorol Soc 90:45–61CrossRefGoogle Scholar
  86. von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, 484 pp. ISBN 0521 450713Google Scholar
  87. Wang C, Picaut J (2004) Understanding ENSO physics: a review. In: C Wang, S-P Xie, Carton JA (eds) Earth’s climate: the ocean-atmosphere interaction. AGU Geophys Monogr Ser 147:21–48Google Scholar
  88. Watanabe M, Chikira M, Imada Y, Kimoto M (2011) Convective control of ENSO simulated in MIROC. J Clim 24(2):543–562CrossRefGoogle Scholar
  89. Welch PD (1967) The use of fast Fourier Transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15:70–73CrossRefGoogle Scholar
  90. Wittenberg AT (2009) Are historical records sufficient to constrain ENSO simulations. Geophys Res Lett 36:L12702CrossRefGoogle Scholar
  91. Wittenberg AT, Rosati A, Lau N-C, Ploshay JJ (2006) GFDL’s CM2 global coupled climate models. Part III: tropical Pacific climate and ENSO. J Clim 19:698–722CrossRefGoogle Scholar
  92. Woolnough SJ, Vitart F, Balmaseda MA (2007) The role of the ocean in the Madden–Julian Oscillation: implications for MJO prediction. Q J Royal Meteorol Soc 133:117–128CrossRefGoogle Scholar
  93. Xue Y, Leetmaa A, Ji M (2000) ENSO prediction with Markov model: the impact of sea level. J Clim 13:849–871CrossRefGoogle Scholar
  94. Yeh SW, Dewitte B, Yim BY, Noh Y (2010) Role of the upper ocean structure in the response of ENSO-like SST variability to global warming. Clim Dyn 35:355–369Google Scholar
  95. Zhang Y, Norris JR, Wallace JM (1998) Seasonality of large scale atmosphere-ocean interaction over the North Pacific. J Clim 11:2473–2481CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Sébastien Masson
    • 1
  • Pascal Terray
    • 1
  • Gurvan Madec
    • 1
  • Jing-Jia Luo
    • 2
  • Toshio Yamagata
    • 3
  • Keiko Takahashi
    • 2
  1. 1.LOCEAN/IPSL, CNRS/IRD/UPMC/MNHNUniversité Pierre et Marie CurieParis cedex 05France
  2. 2.Research Institute for Global ChangeJAMSTECYokohamaJapan
  3. 3.Department of Earth and Planetary Science, Graduate School of ScienceUniversity of TokyoTokyoJapan

Personalised recommendations