Climate Dynamics

, Volume 39, Issue 1–2, pp 495–507 | Cite as

Changes in atmospheric circulation and the Arctic Oscillation preserved within a millennial length reconstruction of summer cloud cover from northern Fennoscandia

  • Giles H. F. YoungEmail author
  • Danny McCarroll
  • Neil J. Loader
  • Mary H. Gagen
  • Andreas J. Kirchhefer
  • Joanne C. Demmler


Cloud cover currently represents the single greatest source of uncertainty in General Circulation Models. Stable carbon isotope ratios (δ13C) from tree-rings, in areas of low moisture stress, are likely to be primarily controlled by photosynthetically active radiation (PAR), and therefore should provide a proxy record for cloud cover or sunshine; indeed this association has previously been demonstrated experimentally for Scots pine in Fennoscandia, with sunlight explaining ca 90% of the variance in photosynthesis and temperature only ca 4%. We present a statistically verifiable 1011-year reconstruction of cloud cover from a well replicated, annually-resolved δ13C record from Forfjord in coastal northwestern Norway. This reconstruction exhibits considerable variability in cloud cover over the past millennium, including extended sunny periods during the cool seventeenth and eighteenth centuries and warm cloudy periods during the eleventh, early fifteenth and twentieth centuries. We find that while a generally positive relationship persists between sunshine and temperature at high-frequency, at lower (multi-decadal) frequencies the relationship is more often a negative one, with cool periods being sunny (most notably the Little Ice Age period from 1600 to 1750 CE) and warm periods more cloudy (e.g. the mediaeval and the twentieth century). We conclude that these long-term changes may be caused by changes in the dominant circulation mode, likely to be associated with the Arctic Oscillation. There is also strong circumstantial evidence that prolonged periods of high summer cloud cover, with low PAR and probably high precipitation, may be in part responsible for major European famines caused by crop failures.


Stable carbon isotopes Arctic Oscillation Cloud cover Sunshine Climate change Norway Fennoscandia Tree-rings Crop failure Famine 



This work was funded by the European Union Millennium project (017008) and UK NERC NE/B501504 (NJL) and NER/S/A/2004/12466 (GHFY). Additional support was provided by the Climate Change Consortium for Wales (C3W). We thank Roderick Bale, Iain Robertson, Ewan Woodley and Eduardo Zorita for helpful discussions, and three anonymous reviewers for their helpful and insightful comments and suggestions.


  1. Aberth J (2001) From the brink of the apocalypse. Routledge, LondonGoogle Scholar
  2. Andreu-Hayles L, Planells O, Gutiérrez E, Muntan E, Helle G, Anchukaitis KJ, Schleser GH (2011) Long tree-ring chronologies reveal 20th century increases in water-use efficiency but no enhancement of tree growth at five Iberian pine forests. Glob Change Biol 17:2095–2112. doi: 10.1111/j.1365-2486.2010.02373.x CrossRefGoogle Scholar
  3. Bale RJ, Robertson I, Salzer MW, Loader NJ, Leavitt SW, Gagen M, Harlan TP, McCarroll D (2011) An annually resolved bristlecone pine carbon isotope chronology for the last millennium. Quat Res 76:22–29. doi: 10.1016/j.yqres.2011.1005.1004 CrossRefGoogle Scholar
  4. Biondi F, Hartsough PC, Estrada IG (2005) Daily weather and tree growth at the tropical treeline of North America. Arct Antarct Alp Res 37:16–24CrossRefGoogle Scholar
  5. Boettger T, Haupt M, Knöller K, Weise M, Waterhouse JS, Rinne KT, Loader NJ, Sonninen E, Jungner H, Masson-Delmotte V, Stievenard M, Guillemin MT, Pierre M, Pazdur A, Leuenberger M, Filot M, Saurer M, Reynolds CE, Helle G, Schleser GH (2007) Wood cellulose preparation methods and mass spectrometric analyses of d13C, d18O, and nonexchangeable d2H values in cellulose, sugar, and starch: an interlaboratory comparison. Anal Chem 79:4603–4612CrossRefGoogle Scholar
  6. Bony S, Dufresne J-L (2005) Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys Res Lett 32:L20806. doi: 20810.21029/22005GL023851 CrossRefGoogle Scholar
  7. Bony S, Colman R, Kattsov VM, Allan RP, Bretherton CS, Dufresne J-L, Hall AE, Hallegatte S, Holland MK, Ingram WJ, Randall DA, Soden BJ, Tselioudis G, Webb WJ (2006) How well do we understand and evaluate climate change feedback processes? J Clim 19:3445–3482CrossRefGoogle Scholar
  8. Briffa KR, Jones PD (1989) Basic chronology statistics and assessment. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer, Dordrecht, pp 137–152Google Scholar
  9. Briffa KR, Jones PD, Bartholin TS, Eckstein D, Schweingruber FH, Karlén W, Zetterberg P, Eronen M (1992) Fennoscandian summers from AD 500: temperature changes on short and long timescales. Clim Dyn 7:111–119CrossRefGoogle Scholar
  10. Campbell R, McCarroll D, Loader NJ, Grudd H, Robertson I, Jalkanen R (2007) Blue intensity in Pinus sylvestris tree-rings: developing a new palaeoclimate proxy. Holocene 17:821–828CrossRefGoogle Scholar
  11. Campbell R, McCarroll D, Robertson I, Loader NJ, Grudd H, Gunnarson BE (2011) Blue intensity in Pinus sylvestris tree rings: a manual for a new palaeoclimate proxy. Tree Ring Res 67:127–134CrossRefGoogle Scholar
  12. Clement AC, Burgman R, Norris JR (2009) Observational and model evidence for positive low-level cloud feedback. Science 325:460–464CrossRefGoogle Scholar
  13. Cook ER, Briffa KR, Meko DM, Graybill A, Funkhouser G (1995) The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. Holocene 5:229–237CrossRefGoogle Scholar
  14. Crowley TJ, Lowery TS (2000) How warm was the medieval warm period? Ambio 29:51–54Google Scholar
  15. Edwards TWD, Birks SJ, Luckman BH, MacDonald GM (2008) Climatic and hydrologic variability during the epast millennium in the eastern Rocky Mountains and northern Great Plains of western Canada. Quat Res 70:188–197CrossRefGoogle Scholar
  16. Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–2253CrossRefGoogle Scholar
  17. Esper J, Frank DC, Wilson RJS, Briffa KR (2005) Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophys Res Lett 32:L07711. doi: 10.1029/2004GL021236 CrossRefGoogle Scholar
  18. Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137CrossRefGoogle Scholar
  19. Frank D, Esper J, Cook ER (2007) Adjustment for proxy number and coherence in a large-scale temperature reconstruction. Geophys Res Lett 34:L16709. doi: 10.1029/2007GL030571 CrossRefGoogle Scholar
  20. Freyer HD, Belacy N (1983) 13C/12C in Northern Hemisphere trees during the past 500 years—anthropogenic impacts and climatic superpositions. J Geophys Res 88:6844–6852CrossRefGoogle Scholar
  21. Gagen MH, McCarroll D, Loader NJ, Robertson I, Jalkanen R, Anchukaitis KJ (2007) Exorcising the ‘segment length curse’: summer temperature reconstruction since AD 1640 using non-detrended stable carbon isotope ratios from pine trees in northern Finland. Holocene 17:435–446CrossRefGoogle Scholar
  22. Gagen MH, Zorita E, McCarroll D, Young GHF, Grudd H, Jalkanen R, Loader NJ, Robertson I, Kirchhefer AJ (2011) Cloud response to summer temperatures in Fennoscandia over the last thousand years. Geophys Res Lett 38:L05701. doi: 05710.01029/02010GL046216 CrossRefGoogle Scholar
  23. Grudd H (2008) Torneträsk tree-ring width and density AD 500–2004: A test of climate sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Clim Dyn 31:843–857CrossRefGoogle Scholar
  24. Grudd H, Briffa KR, Karlén W, Bartholin TS, Jones PD, Kromer B (2002) A 7400-year tree-ring chronology in northern Swedish Lapland: natural climatic variability expressed on annual to millennial timescales. Holocene 12:657–666CrossRefGoogle Scholar
  25. Hari P, Hallman E, Salminen R, Vapaavuori E (1981) Evaluation of factors controlling net photosynthetic rate in Scots pine seedlings under field conditions without water stress. Oecologia 48:186–189CrossRefGoogle Scholar
  26. Helama S, Makarenko NG, Karimova LM, Kruglun OA, Timonen M, Holopainen J, Meriläinen J, Eronen M (2009) Dendroclimatic transfer functions revisited: Little Ice Age and Medieval Warm Period summer temperatures reconstructed using artificial neural networks and linear algorithms. Ann Geophys 7:1097–1111CrossRefGoogle Scholar
  27. Hilasvuori E, Berninger F, Sonninen E, Tuomenvirta H, Jungner H (2009) Stability of climate signal in carbon and oxygen isotope records and ring width from Scots pine (Pinus sylvestris L.) in Finland. J Quat Sci 24:469–480CrossRefGoogle Scholar
  28. Jones PD, Mann ME (2004) Climate over past millennia. Rev Geophys 42:RG2002. doi: 10.1029/2003RG000143
  29. Jordan WC (1996) The great famine. Princeton University press, PrincetonGoogle Scholar
  30. Kirchhefer AJ (2001) Reconstruction of summer temperatures from tree-rings of Scots pine (Pinus sylvestris L.) in coastal northern Norway. Holocene 11:41–52CrossRefGoogle Scholar
  31. Körner C (1999) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, BerlinGoogle Scholar
  32. Kress A, Young GHF, Saurer M, Loader NJ, Siegwolf RTW, McCarroll D (2009) Stable isotope coherence in the earlywood and latewood of tree line conifers. Chem Geol 268:52–57CrossRefGoogle Scholar
  33. Lamb HH (1963) What can we find about the trend of our climate? Weather 18:194–216CrossRefGoogle Scholar
  34. Lamb HH (1995) Climate history and the modern world, 2nd edn. Routledge, LondonGoogle Scholar
  35. Lee TCK, Zwiers FW, Tsao M (2008) Evaluation of proxy-based millennial reconstruction methods. Clim Dyn 31:263–281. doi: 10.1007/s00382-007-0351-9 CrossRefGoogle Scholar
  36. Leijonhufvud L, Wilson R, Moberg A, Söderberg J, Retsö D, Söderlind U (2010) Five centuries of Stockholm winter/spring temperatures reconstructed from documentary evidence and instrumental observations. Clim Change 101:109–141CrossRefGoogle Scholar
  37. Linderholm HW, Gunnarson BE (2005) Summer temperature variability in central Scandinavia during the last 3600 years. Geografiska Annaler 87A:231–241CrossRefGoogle Scholar
  38. Lindholm M, Jalkanen R, Salminen H, Aalto T, Ogurtsov M (2010) The height-increment record of summer temperature extended over the last millennium in Fennoscandia. Holocene 21:319–326CrossRefGoogle Scholar
  39. Loader NJ, Robertson I, Barker AC, Switsur VR, Waterhouse JS (1997) An improved technique for the batch processing of small wholewood samples to a-cellulose. Chem Geol 136:313–317CrossRefGoogle Scholar
  40. Loader NJ, Robertson I, McCarroll D (2003) Comparison of stable carbon isotope ratios in the whole wood, cellulose and lignin of oak tree-rings. Palaeogeogr Palaeoclimatol Palaoecol 196:395–407CrossRefGoogle Scholar
  41. Loader NJ, Santillo PM, Woodman-Ralph JP, Rolfe JE, Hall MA, Gagen M, Robertson I, Wilson R, Froyd CA, McCarroll D (2008) Multiple stable isotopes from oak trees in southwestern Scotland and the potential for stable isotope dendroclimatology in maritime climatic regions. Chem Geol 252:62–71CrossRefGoogle Scholar
  42. Loader NJ, Helle G, Los S, Lehmkuhl F, Schleser GH (2010) Twentieth-century summer temperature variability in the southern Altai Mountains: a carbon and oxygen isotope study of tree-rings. Holocene 20:1149–1156. doi: 1110.1177/0959683610369507 CrossRefGoogle Scholar
  43. Mann ME, Jones PD (2003) Global surface temperatures over the past two millennia. Geophys Res Lett 30:1820. doi: 10.1029/2003GLO17814 CrossRefGoogle Scholar
  44. McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801CrossRefGoogle Scholar
  45. McCarroll D, Pawellek F (1998) Stable carbon isotope ratios of latewood cellulose in Pinus sylvestris from northern Finland: variability and signal-strength. Holocene 8:675–684CrossRefGoogle Scholar
  46. McCarroll D, Pawellek F (2001) Stable carbon isotopes ratios of Pinus sylvestris from northern Finland and the potential for extracting a climate signal from long Fennoscandian chronologies. Holocene 11:517–526CrossRefGoogle Scholar
  47. McCarroll D, Pettigrew E, Luckman A, Guibal F, Edouard JL (2002) Blue reflectance provides a surrogate for latewood density of high-latitude Pine tree rings. Arct Antarct Alp Res 34:450–453CrossRefGoogle Scholar
  48. McCarroll D, Jalkanen R, Hicks S, Tuovinen M, Gagen MH, Pawellek F, Eckstein D, Schmitt U, Autio J, Heikkinen O (2003) Multiproxy dendroclimatology: a pilot study in northern Finland. Holocene 13:829–838CrossRefGoogle Scholar
  49. McCarroll D, Gagen MH, Loader NJ, Robertson I, Anchukaitis KJ, Los S, Young GHF, Jalkanen R, Kirchhefer AJ, Waterhouse JS (2009) Correction of tree ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere. Geochim Cosmochim Ac 73:1539–1547CrossRefGoogle Scholar
  50. McCarroll D, Gagen MH, Loader NJ, Robertson I, Anchukaitis KJ, Los S, Young GHF, Jalkanen R, Kirchhefer AJ, Waterhouse JS (2010) Erratum to “Correction of tree ringstable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere”, Geochimica et Cosmochimica Acta 73, 1539–1547. Geochim Cosmochim Ac 74:3040CrossRefGoogle Scholar
  51. McCarroll D, Tuovinen M, Campbell R, Gagen M, Grudd H, Jalkanen R, Loader NJ, Robertson I (2011a) A critical evaluation of multi-proxy dendroclimatology in northern Finland. J Quat Sci 26:7–14CrossRefGoogle Scholar
  52. McCarroll D, Millennium Project Team (2011b) European climate of the last one thousand years: final report of the Millennium project (in review)Google Scholar
  53. NRC (2006) Surface Temperature reconstructions for the last 2, 000 years. The National Academies, WashingtonGoogle Scholar
  54. Osborn TJ, Briffa KR, Jones PD (1997) Ajusting variance for sample-size in tree-ring chronologies and other regional-mean time-series. Dendrochronologia 15:89–99Google Scholar
  55. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  56. Rinne KT, Boettger T, Loader NJ, Robertson I, Switsur VR, Waterhouse JS (2005) On the purification of a-cellulose from resinous wood for stable isotope (H, C and O) analysis. Chem Geol 222:75–82CrossRefGoogle Scholar
  57. Robertson I, Lucy D, Baxter L, Pollard AM, Aykroyd RG, Barker AC, Carter AHC, Switsur VR, Waterhouse JS (1999) A kernel-based Bayesian approach to climatic reconstructio. Holocene 9:495–500CrossRefGoogle Scholar
  58. Rogers JC, McHugh MJ (2002) On the seperability of the North Atlantic oscillation and Arctic oscillation. Clim Dyn 19:599–608CrossRefGoogle Scholar
  59. Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M (2006) Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol 170:301–310CrossRefGoogle Scholar
  60. Ruddiman WF (2005) Plows, plagues and petroleum: how humans took control of climate. Princeton University Press, PrincetonGoogle Scholar
  61. Saurer M, Siegwolf R, Schweingruber FH (2004) Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Glob Change Biol 10:2109–2120CrossRefGoogle Scholar
  62. Seftigen K, Linderholm HW, Loader NJ, Liu Y, Young GHF (2011) The influence of climate on 13C/12C and 18O/16O ratios in tree ring cellulose of Pinus sylvestris L. growing in the central Scandinavian Mountains. Chem Geol 286:84–93. doi: 10.1016/j.chemgeo.2011.1004.1006 Google Scholar
  63. Sidorova OV, Siegwolf RTW, Saurer M, Naurzbaev MM, Shashkin AV, Vaganov EA (2010) Spatial patterrns of climate changes in the Eurasian north reflected in Siberian larch tree-ring parameters and stable isotopes. Glob Change Biol 16:1003–1018CrossRefGoogle Scholar
  64. Soden BJ, Held IM (2006) An assessment of climate feedbacks in coupled ocean-atmosphere models. J Clim 19:3354–3360CrossRefGoogle Scholar
  65. Switsur VR, Waterhouse JS, Field EM, Carter AHC, Loader NJ (1995) Stable isotope studies in tree rings from oak—techniques and some preliminary results. Paläoklimaforschung 15:129–140Google Scholar
  66. Thompson DWJ (1998) The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300CrossRefGoogle Scholar
  67. Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling DR, Klein Tank A, Parker DE, Rahimzadeh F, Renwick JA, Rusticucci M, Soden BJ, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  68. Treydte K, Schleser GH, Schweingruber FH, Winiger M (2001) The climatic significance of δ13C in subalpine spruces (Lötschental, Swiss Alps). Tellus 53B:593–611Google Scholar
  69. Treydte KS, Frank DC, Saurer M, Helle G, Schleser GH, Esper J (2009) Impact of climate and CO2 on a millennium-long tree-ring carbon isotope record. Geochim Cosmochim Ac 73:4635–4647CrossRefGoogle Scholar
  70. Troyer DA, Fernandes G (2000) Caloric intake: sources, deficiencies, and excess—an overview. In: Gershwin ME, German JB, Keen CL (eds) Nutrition and immunology: principles and practice. Humana Press, Totowa, p 505Google Scholar
  71. Tuomenvirta H, Drebs A, Førland E, Tveito OE, Alexandersson H, Laursen EV, Jónsson T (2001) Nordklim data set 1.0—description and illustrations. In: Report 08/01. Norwegian Meteorological Institute, OsloGoogle Scholar
  72. Vaganov EA, Hughes MK, Shashkin AV (2006) Growth dynamics of conifer tree rings. Springer, BerlinGoogle Scholar
  73. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New YorkGoogle Scholar
  74. Vogel JC (1980) Fractionation of the carbon isotopes during photosynthesis. Sitzungsberichte der Heidelberger Akademie der Wissenschaften 3:111–135Google Scholar
  75. Wallace JM (2000) North Atlantic oscillation/annular mode: two paradigms—one phenomenon. Q J R Meteorol Soc 126:791–805. doi: 710.1002/qj.49712656402 CrossRefGoogle Scholar
  76. Waterhouse JS, Switsur VR, Barker AC, Carter AHC, Hemming DL, Loader NJ, Robertson I (2004) Northern European trees show a progressively diminishing response to increasing atmospheric carbon dioxide concentrations. Quat Sci Rev 23:803–810CrossRefGoogle Scholar
  77. Webb MJ, Senior CA, Sexton DMH, Ingram WJ, Williams KD, Ringer MA, McAvaney BJ, Colman R, Soden BJ, Gudel R, Knutson T, Emori S, Ogura T, Tsushima Y, Andronova N, Li B, Musat I, Bony S, Taylor KE (2006) On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Clim Dyn 27:17–38CrossRefGoogle Scholar
  78. Wheeler D, Garcia-Herrera R, Wilkinson CW, Ward C (2010) Atmospheric circulation and storminess derived from Royal Navy logbook: 1685 to 1750. Clim Change 101:257–280CrossRefGoogle Scholar
  79. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series with applications in dedroclimatology and hydrometerorology. J Clim Appl Meteorol 23:201–213CrossRefGoogle Scholar
  80. Wils T, Robertson I, Eshetu Z, Koprowski M, Sass-Klaassen U, Touchan R, Loader NJ (2010) Towards a reconstruction of Blue Nile baseflow from Ethiopian tree rings. Holocene 20:837–848CrossRefGoogle Scholar
  81. Young GHF, McCarroll D, Loader NJ, Kirchhefer AJ (2010) A 500-year record of summer near-ground solar radiation from tree-ring stable carbon isotopes. Holocene 20:315–324CrossRefGoogle Scholar
  82. Young GHF, Demmler JC, Gunnarson BE, Kirchhefer AJ, Loader NJ, McCarroll D (2011) Age trends in tree ring growth and isotopic archives: a case study of Pinus sylvestris L. from northwestern Norway. Glob Biogeochem Cycle GB2020. doi: 10.1029/2010GB003913

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Giles H. F. Young
    • 1
    Email author
  • Danny McCarroll
    • 1
  • Neil J. Loader
    • 1
  • Mary H. Gagen
    • 1
  • Andreas J. Kirchhefer
    • 2
    • 3
  • Joanne C. Demmler
    • 1
  1. 1.Department of GeographySwansea UniversitySwanseaUK
  2. 2.Department of Arctic and Marine BiologyUniversity of TromsøTromsøNorway
  3. 3.DendroøkologenTromsøNorway

Personalised recommendations