Climate Dynamics

, Volume 38, Issue 11–12, pp 2467–2481 | Cite as

A methodology for the comparison of blocking climatologies across indices, models and climate scenarios

  • Elizabeth A. Barnes
  • Julia Slingo
  • Tim Woollings
Article

Abstract

There is urgent need for a consistent blocking identification method that can be used and compared across reanalyses, models and climate scenarios. We present such a method and diagnose daily blocking frequency in 43 years (1958–2000) of ERA-40 Reanalysis for indices defined on both the commonly used geopotential height and potential temperature fields as well as a zonal wind index. Applications of various blocking indices to the same data highlights the importance of a consistent methodology for comparison and a method that identifies blocks along a path that varies with the latitude of the storm track. Since the method accommodates blocking detection using 500 mb zonal-wind which is readily available in climate model output, we diagnose blocking in 14 CMIP3 models under two different greenhouse gas scenarios. Blocking duration remains nearly constant among the scenarios, but a robust reduction in blocking frequency with global warming is demonstrated.

Keywords

Blocking anticyclone Climate change CMIP3 AR4 

References

  1. Barnes EA, Hartmann DL (2010) Influence of eddy-driven jet latitude on North Atlantic jet persistence and blocking frequency in CMIP3 integrations. Geophys Res Lett 37. doi:10.1029/2010GL045700
  2. Barriopedro D, Garcia-Herrera R, Gonzalex-Rouco J (2010a) Application of blocking diagnosis methods to general circulation models. Part I: a novel detection scheme. Clim Dynam. doi:10.1007/s00382-010-0766-6
  3. Barriopedro D, Garcia-Herrera R, Gonzalex-Rouco J (2010b) Application of blocking diagnosis methods to general circulation Models. Part II: model simulations. Clim Dynam doi:10.1007/s00382-010-0767-5
  4. Barriopedro D, Garcia-Herrera R, Huth R (2008) Solar modulation of Northern Hemisphere winter blocking. J Geophys Res 113:D14118. doi:10.1029/2008JD009789 CrossRefGoogle Scholar
  5. Barriopedro D, Garcia-Herrera R, Lupo AR, Hernandez E (2006) A climatology of Northern Hemisphere blocking. J Clim 19:1042–1063CrossRefGoogle Scholar
  6. Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19:3518–3543CrossRefGoogle Scholar
  7. Berrisford P, Hoskins BJ, Tyrlis E (2007) Blocking and Rossby wave breaking on the dynamical tropopause in the Southern Hemisphere. J Atmos Sci 64:2881–2898CrossRefGoogle Scholar
  8. Black E, Blackburn M, Harrison G, Hoskins B, Methven J (2004) Factors contributing to the summer 2003 European heatwave. Weather 17:4080–4088Google Scholar
  9. Croci-Maspoli M, Schwierz C, Davies HC (2007) A multifaceted climatology of atmospheric blocking and its recent linear trend. J Clim 20:633–649CrossRefGoogle Scholar
  10. D’Andrea F et al (1998) Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988. Clim Dynam 14:385–407CrossRefGoogle Scholar
  11. Delworth T et al (2006) GFDL’s CM2 global coupled climate models—Part 1: formulation and simulation characteristics. J Clim 19:643–674CrossRefGoogle Scholar
  12. Dole R et al (2011) Was there a basis for anticipating the 2010 Russian heat wave? Geophys Res Lett 38. doi:10.1029/2010GL046582
  13. Dole RM, Gordon ND (1983) Persistent anomalies of the extratropical Northern Hemisphere winter time circulation: geographical distribution and regional persistence characteristics. Mon Wea Rev 111:1567–1586CrossRefGoogle Scholar
  14. Dong L, Vogelsang TJ, Colucci SJ (2008) Interdecadal trend and ENSO-related interannual variability in Southern Hemisphere blocking. J Clim 21:3068–3077CrossRefGoogle Scholar
  15. Fowler D et al (2008) Ground-level ozone in the 21st century: future trends, impacts and policy implications. Tech Rep R SocGoogle Scholar
  16. Frankze C, Woollings T (2010) On the perisistence and predictability properties of North Atlantic climate variability. J Clim (accepted)Google Scholar
  17. Hamming RW (1989) Digital filters. Prentice Hall, Upper Saddle RiverGoogle Scholar
  18. Hartmann DL, Wallace JM, Thompson VLDWJ, Holton JR (2000) Can ozone depletion and global warming interact to produce rapid climate change? Proc Natl Acad Sci (USA) 97:1412–1417CrossRefGoogle Scholar
  19. Hinton TJ, Hoskins BJ, Martin GM (2009) The influence of tropical sea surface temperatures and precipitation on north Pacific atmospheric blocking. Clim Dynam 33:549–563. doi:10.1007/s00382-009-0542-7 CrossRefGoogle Scholar
  20. Hoskins BJ, James IN, White GH (1983) The shape, propagation and mean-flow interaction of large-scale weather systems. J Atmos Sci 40:1595CrossRefGoogle Scholar
  21. Ioannidou L, Yau MK (2008) A climatology of the Northern Hemisphere winter anticyclones. J Geophys Res 113:D08119. doi:10.1029/2007JD008409 CrossRefGoogle Scholar
  22. Lejanäs H, Økland H (1983) Characteristics of Northern Hemisphere blocking as determined from a long series of observational data. Tellus 35:350–362Google Scholar
  23. Masato G, Hoskins BJ, Woolings TJ (2009) Can the frequency of blocking be described by a red noise process? JAS 66:2143–2149Google Scholar
  24. Matsueda M (2011) Predicability of Euro-Russian blocking in summer 2010. Geophys Res Lett 38. doi:10.1029/2010GL046557
  25. Matsueda M, Mizuta R, Kusunoki S (2009) Future change in wintertime atmospheric blocking simulated using a 20-km-mesh atmospheric global circulation model. J Geophys Res 114:D12114. doi:10.1029/2009JD011919 CrossRefGoogle Scholar
  26. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WRCP CMIP3 multi-model dataset: a new era in climate change research. Bull Amer Meteor Soc 88:1383–1394CrossRefGoogle Scholar
  27. Meehl GA et al (2007b) Global climate projections. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, CambridgeGoogle Scholar
  28. Miller RL, Schmidt GA, Shindell DT (2006) Forced annular variations in the 20th century intergovernmental panel on climate change fourth assessment report models. J Geophys Res 111. doi:10.1029/2005JD006323
  29. Nakamura H, Nakamura M, Anderson JL (1997) The role of high- and low-frequency dynamics in blocking formation. Mon Wea Rev 125:2074–2093CrossRefGoogle Scholar
  30. Pelly JL, Hoskins BJ (2003) A new perspective on blocking. J Atmos Sci 60:743–755CrossRefGoogle Scholar
  31. Pinto JG, Ulbrich U, Leckebusch GC, Spangehl T, Reyers M, Zacharias S (2007) Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MIP-OM1 GCM. Clim Dynam 29:195–210CrossRefGoogle Scholar
  32. Ringer MA et al (2006) The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part II: aspects of variability and regional climate. J Clim 19:1302CrossRefGoogle Scholar
  33. Scaife A et al (2011) Improved Atlantic blocking in a climate model. Geophys Res Lett (submitted)Google Scholar
  34. Scaife AA, Woollings T, Knight J, Martin G, Hinto T (2010) Atmospheric blocking and mean biases in climate models. J Clim 23:6143–6152CrossRefGoogle Scholar
  35. Schwierz C, Croci-Maspoli M, Davies HC (2004) Perspicacious indicators of atmospheric blocking. Geophys Res Lett 31 doi:10.1029/2003GL019341
  36. Sillmann J, Croci-Maspoli M (2009) Present and future atmospheric blocking and its impacts on European mean and extreme climate. Geophys Res Lett 36:L10702. doi:10.1029/2009GL038259 CrossRefGoogle Scholar
  37. Tibaldi S, Molteni F (1990) On the operational predictability of blocking. Tellus 42:343–365CrossRefGoogle Scholar
  38. Tyrlis E, Hoskins BJ (2008) Aspects of Northern Hemisphere atmospheric blocking climatology. J Atmos Sci 65:1638–1652CrossRefGoogle Scholar
  39. Tyrlis E, Hoskins BJ (2008) The morphology of Northern Hemisphere blocking. J Atmos Sci 65:1653–1665CrossRefGoogle Scholar
  40. Uppala SM et al (2005) The ERA-40 reanalysis. Quart J R Meteor Soc 131:2961–3012CrossRefGoogle Scholar
  41. Waston JS, Colucci SJ (2002) Evaluation of ensemble predictions of blocking in the NCEP global spectral model. Mon Wea Rev 130:3008–3021CrossRefGoogle Scholar
  42. Woollings T (2010) Dynamical influences on European climate: an uncertain future. Philos Trans R Soc Lond A 368:3733–3756CrossRefGoogle Scholar
  43. Woollings T, Hannachi A, Hoskins B, Turner A (2010) A regime view of the North Atlantic Oscillation and its response to anthropogenic forcing. J Clim 23:1291–1307CrossRefGoogle Scholar
  44. Woollings T, Hoskins B, Blackburn M, Berrisford P (2008) A new Rossby wave-breaking interpretation of the North Atlantic Oscillation. J Atmos Sci 65:609–626CrossRefGoogle Scholar
  45. Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32. doi:10.1029/2005GL023684

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Elizabeth A. Barnes
    • 1
  • Julia Slingo
    • 2
  • Tim Woollings
    • 3
  1. 1.Department of Atmospheric SciencesUniversity of WashingtonSeattleUSA
  2. 2.Met OfficeExeterUK
  3. 3.Department of MeteorologyUniversity of ReadingReadingUK

Personalised recommendations