Climate Dynamics

, Volume 39, Issue 6, pp 1401–1412 | Cite as

Variation of the North Atlantic subtropical high western ridge and its implication to Southeastern US summer precipitation

  • Laifang Li
  • Wenhong Li
  • Yochanan Kushnir


Variations of the North Atlantic subtropical high (NASH) western ridge and their implication to the Southeastern United States (SE US) summer precipitation were analyzed for the years 1948–2007. The results show that the movement of the NASH western ridge regulates both moisture transport and vertical motion over the SE US, especially in the last three decades, during which the ridge moved westward towards the American continent. When the NASH western ridge is located southwest (SW) of its mean climate position, excessive summer precipitation is observed due to an enhanced moisture transport. In contrast, when the western ridge is located in the northwest (NW), a precipitation deficit prevails as downward motion dominates the region. Composite analysis indicates that SW ridging results mainly from the NASH center’s intensification; whereas NW ridging is likely caused by stationary wave propagation from the eastern Pacific/US western coast. In recent decades, both the SW and NW ridge positions have been observed to increase in frequency. Our results suggest that the increase in the SW ridging consistently follows the NASH’s intensification associated with anthropogenic forcing as projected by coupled climate models. However, the increased frequency of NW ridging tends to follow the positive Pacific decadal oscillation (PDO) index. Thus, the enhanced variability in the SE US summer precipitation in recent decades might be a combined result of anthropogenic forcing and internal variability of the climate system. Results suggest that, as anthropogenic forcing continues to increase, the SE US will experience more frequent wet summers and an increase in the frequency of dry summers during positive PDO phases.


North Atlantic subtropical high Western ridge SE US summer precipitation Global warming PDO Stationary wave activity 



We thank the international modeling groups for providing their data for analysis, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) for collecting and archiving the model data, the JSC/CLIVAR Working Group on Coupled Modeling (WGCM) and their Coupled Model Intercomparison Project (CMIP) and Climate Simulation Panel for organizing the model data analysis activity, and the IPCC WG1 TSU for technical support. The IPCC Data Archive at Lawrence Livermore National Laboratory is supported by the Office of Science, US Department of Energy. We thank Drs. M. Susan Lozier, Ming Cai, Amy Clement, Paul A. Baker, Ana Barros, Robert E. Dickinson, and Jiansheng Ye and two anonymous reviewers for their insightful comments, and Dr. Alex Glass and Ms. Diane Bryson for editorial assistance. This work is supported by startup funds from Duke University and the Nicholas School Office of the Dean. Y. Kushnir was supported by NOAA Grant NA10OAR4310137.


  1. Arritt RW, Rink TD, Segal M, Todey DP, Clark CA, Mitchell MJ, Labas KM (1997) The Great Plains low-level jet during the warm season of 1993. Mon Weather Rev 125:2176–2192CrossRefGoogle Scholar
  2. Barlow M, Nigam S, Berbery EH (2001) ENSO, Pacific decadal variability, and US summertime precipitation, drought, and stream flow. J Clim 14:2105–2128CrossRefGoogle Scholar
  3. Black RX (1997) Deducing anomalous wave source regions during the life cycles of persistent flow anomalies. J Atmos Sci 54:895–907CrossRefGoogle Scholar
  4. Chan SC, Misra V (2010) A diagnosis of the 1979–2005 extreme rainfall events in the Southeast US with isentropic moisture tracing. Mon Weather Rev 138:1172–1185CrossRefGoogle Scholar
  5. Chen P, Newman M (1998) Rossby wave propagation and the rapid development of upper-level anomalous anticyclones during the 1988 US drought. J Clim 11:2491–2504CrossRefGoogle Scholar
  6. Cook BI, Seager R, Miller RL (2011) Atmospheric circulation anomalies during two persistent North American droughts: 1932–1939 and 1948–1957. Clim Dyn 36:2339–2355CrossRefGoogle Scholar
  7. Curtis S (2008) The Atlantic multidecadal oscillation and extreme daily precipitation over the US and Mexico during the hurricane season. Clim Dyn 30:343–351CrossRefGoogle Scholar
  8. Davis RE, Hayden BP, Gay DA, Phillips WL, Jones GV (1997) The North Atlantic subtropical anticyclone. J Clim 10:728–744CrossRefGoogle Scholar
  9. Diem J (2006) Synoptic-scale controls of summer precipitation in the Southeastern United States. J Clim 19:613–621CrossRefGoogle Scholar
  10. Franzke C, Fraedrich K, Lunkeit F (2001) Teleconnections and low-frequency variability in idealized experiments with two storm tracks. Quart J Roy Meteor Soc 127:1321–1339CrossRefGoogle Scholar
  11. Furtado JC, Lorenzo ED, Schneider N, Bond NA (2011) North Pacific decadal variability and climate change in the IPCC AR4 models. J Clim 24:3049–3067CrossRefGoogle Scholar
  12. Gamble DW, Parnell DB, Curtis S (2008) Spatial variability of the Caribbean mid-summer drought and relation to north Atlantic high circulation. Int J Climatol 28:343–350CrossRefGoogle Scholar
  13. Gill AE (1980) Some simple solutions for the heat induced tropical circulation. Quart J Roy Meteor Soc 106:447–462CrossRefGoogle Scholar
  14. Gotvald AJ, McCallum BE (2010) Epic flooding in Georgia, 2009: US Geological survey fact sheet 2010–3107, 2pGoogle Scholar
  15. Henderson KG, Vega AJ (1996) Regional precipitation variability in the southeastern United States. Phys Geogr 17:93–112Google Scholar
  16. Higgins RW, Shi W, Yarosh E, Joyce R (2000) Improved United States precipitation quality control system and analysis. NCEP/Climate Prediction Center ATLAS No. 7. Camp Springs, MD, 40 ppGoogle Scholar
  17. Honda M, Kushnir Y, Nakamura H, Yamane S, Zebiak SE (2005) Formation, mechanisms, and predictability of the Aleutian–Icelandic low seesaw in ensemble AGCM simulations. J Clim 25:1423–1434CrossRefGoogle Scholar
  18. Hu Q, Feng S, Oglesby RJ (2011) Variations in North American summer precipitation driven by the Atlantic multidecadal oscillation. J Clim (in press). doi: 10.1175/2011JCLI4060.1
  19. Huffman GJ et al (1997) The global precipitation climatology project (GPCP) combined precipitation dataset. Bull Am Meteorol Soc 78:5–20CrossRefGoogle Scholar
  20. Kalnay E et al (1996) The NCEP-NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  21. Katz RW, Parlange MB, Tebaldi C (2003) Stochastic modeling of the effects of large-scale circulation on daily weather in the southeastern US. Clim Change 60:189–216CrossRefGoogle Scholar
  22. Knight DB, Davis RE (2009) Contribution of tropical cyclones to extreme rainfall events in the southeastern United States. J Geophys Res Atmos 114:D23102CrossRefGoogle Scholar
  23. Kushnir Y, Seager R, Ting M, Naik N, Nakamura J (2010) Mechanisms of tropical Atlantic SST influence on North American precipitation variability. J Clim 23:5610–5628CrossRefGoogle Scholar
  24. Li W, Li L, Fu R, Deng Y, Wang H (2011) Changes to the North Atlantic subtropical high and its role in the intensification of summer rainfall variability in the Southeastern United States. J Clim 24:1499–1506CrossRefGoogle Scholar
  25. Liu Y, Wu G (2004) Progress in the study on the formation of the summertime subtropical anticyclone. Adv Atmos Sci 21:322–342CrossRefGoogle Scholar
  26. Liu Y, Wu G, Ren R (2004) Relationship between the subtropical anticyclone and diabatic heating. J Clim 17:682–698CrossRefGoogle Scholar
  27. Livezey RE, Chen WY (1983) Statistical field significance and its determination by Monte Carlo techniques. Mon Weather Rev 111:46–59CrossRefGoogle Scholar
  28. Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Oceanogr 58:35–44CrossRefGoogle Scholar
  29. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impact on salmon production. Bull Am Meteorol Soc 78:1069–1079CrossRefGoogle Scholar
  30. Manuel J (2008) Drought in the southeast: lessons for water management. Environ Health Perspect 116:A168–A171CrossRefGoogle Scholar
  31. Meehl GA et al (2007) The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394CrossRefGoogle Scholar
  32. Mo KC, Berbery EH (2004) Low-level jets and the summer precipitation regimes over North America. J Geophys Res Atmos 109:D06117CrossRefGoogle Scholar
  33. Mo KC, Schemm JE (2008) Relationship between ENSO and drought over the Southeastern United States. Geophys Res Lett 35:L15701CrossRefGoogle Scholar
  34. Nigam S, Chan SC (2009) On the summertime strengthening of the Northern hemisphere Pacific sea level pressure anticyclone. J Clim 22:1174–1192CrossRefGoogle Scholar
  35. Plumb RA (1985) On the three-dimensional propagation of stationary waves. J Atmos Sci 42:217–229CrossRefGoogle Scholar
  36. Seager R, Murtugudde R, Naik N, Clement A, Gordon N, Miller J (2003) Air-sea interaction and the seasonal cycle of the subtropical anticyclones. J Clim 16:1948–1966CrossRefGoogle Scholar
  37. Seager R, Tzanova A, Nakamura J (2009) Drought in the Southeastern United States: causes, variability over the last millennium and the potential for future hydroclimate change. J Clim 22:5021–5045CrossRefGoogle Scholar
  38. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296CrossRefGoogle Scholar
  39. Stahle WD, Cleaveland MK (1992) Reconstruction and analysis of spring rainfall over the Southeastern US for the past 1000 years. Bull Am Meteorol Soc 73:1947–1961CrossRefGoogle Scholar
  40. Ting M, Wang H (2006) The role of the North American topography on the maintenance of the Great Plains summer low-level jet. J Atmos Sci 63:1056–1068CrossRefGoogle Scholar
  41. Wang H, Fu R, Kumar A, Li W (2010) Intensification of summer rainfall variability in the Southeastern United States during recent decades. J Hydrometeorol 11:1007–1018CrossRefGoogle Scholar
  42. Weaver SJ, Nigam S (2008) Variability of the Great Plains low-level jet: large-scale circulation context and hydroclimate impacts. J Clim 21:1532–1551CrossRefGoogle Scholar
  43. Weaver SJ, Schubert S, Wang H (2009) Warm season variations in the low-level circulation and precipitation over the central United States in observations, AMIP simulations, and idealized SST experiment. J Clim 22:5401–5420CrossRefGoogle Scholar
  44. Wilks DS (1995) Statistical methods in the atmospheric sciences. Academic Press, New YorkGoogle Scholar
  45. Wu G, Liu Y (2003) Summertime quadruplet heating pattern in the subtropics and the associated atmospheric circulation. Geophys Res Lett 30:1201CrossRefGoogle Scholar
  46. Wu G, Liu Y, Zhu X, Li W, Ren R, Duan A, Liang X (2009) Multi-scale forcing and the formation of subtropical desert and monsoon. Ann Geophys-Ger 27:3631–3644CrossRefGoogle Scholar
  47. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–1993. J Clim 10:1004–1020CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Earth and Ocean Sciences, Nicholas School of the EnvironmentDuke UniversityDurhamUSA
  2. 2.Lamont-Doherty Earth ObservatoryColumbia University Earth InstitutePalisadesUSA

Personalised recommendations