Climate Dynamics

, Volume 39, Issue 5, pp 1093–1105

Impact of ice sheet induced North Atlantic oscillation on East Asian summer monsoon during an interglacial 500,000 years ago

Article

Abstract

Marine Isotope Stage (MIS) 13, an interglacial about 500,000 years ago, is unique due to an exceptionally strong East Asia summer monsoon (EASM) occurring in a relatively cool climate with low greenhouse gas concentrations (GHG). This paper attempts to find one of the possible mechanisms for this seeming paradox. Simulations with an Earth System model LOVECLIM show that the presence of ice sheets over North America and Eurasia during MIS-13 induces a positive phase of the winter North Atlantic Oscillation (NAO) like feature. The ocean having a longer memory than the atmosphere, the oceanic anomalies associated with NAO persists until summer. The signals of summer NAO are transmitted to East Asia to reinforce the monsoon there through the stationary waves excited at the Asian Jet entrance. The geopotential height shows clearly a mid-latitude wave train with positive anomalies over the eastern Mediterranean/Caspian Sea and the Okhotsk Sea and a negative anomaly over Lake Baikal. This reinforces the effect of the high-latitude wave train induced independently by the Eurasian ice sheet topography as shown in previous study. These features reinforce the Meiyu front and enhance the precipitation over East Asia. The results obtained from LOVECLIM are further confirmed by an atmospheric general circulation model, ARPEGE.

Keywords

North Atlantic Oscillation East Asian summer monsoon Blocking highs Interglacial MIS-13 Ice sheets 

References

  1. An ZS et al (1991) Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quaternary Res 36:29–36CrossRefGoogle Scholar
  2. Berger A (1978) Long-term variations of daily insolation and quaternary climatic changes. J Atmos Sci 35(12):2362–2367CrossRefGoogle Scholar
  3. Chen FH, Bloemendal J, Zhang PZ, Liu GX (1999) An 800 ky proxy record of climate from lake sediments of the Zoige Basin, eastern Tibetan Plateau. Palaeogeogr Palaeoclimatol Paleoecol 151:307–320CrossRefGoogle Scholar
  4. Deser C, Walsh JE, Timlin MS (2000) Arctic sea ice variability in the context of recent atmospheric circulation trends. J Clim 13:617–633CrossRefGoogle Scholar
  5. Ding YH (1991) Monsoon over China. Kluwer Academic Pub., p 419Google Scholar
  6. Ding YH (2004) Seasonal March of the East Asian summer monsoon. In: Chang CP (ed) The East Asian monsoon. World Science, Singapore, pp 3–53CrossRefGoogle Scholar
  7. Ding YH, Chan J (2005) The East Asian summer monsoon: an overview. Meteorol Atmos Phys 89:117–142. doi:10.1007/s00703-005-0125-z CrossRefGoogle Scholar
  8. Ding YH, Sikka DR (2006) Synoptic systems and weather. In: Wang B (ed) The Asian monsoon. Springer, New York, pp 131–201CrossRefGoogle Scholar
  9. Ding Q, Wang B (2005) Circumglobal teleconnection in the Northern Hemisphere summer. J Clim 18:3483–3505. doi:10.1175/JCLI3473.1 CrossRefGoogle Scholar
  10. Ding Q, Wang B (2007) Intraseasonal teleconnection between the Eurasian wave train and The Indian monsoon. J Clim 20:3751–3767CrossRefGoogle Scholar
  11. Ding Q, Wang B, Wallace JM, Branstator G (2011) Tropical—extratropical teleconnections in boreal summer: observed interannual variability. J Clim 24:1878–1896. doi:10.1175/2011JCLI3621.1 CrossRefGoogle Scholar
  12. Douville H, Bielli S, Cassou C, Deque M, Hall NMJ, Tyteca S, Voldoire A (2011) Tropical influence on boreal summer mid-latitude stationary waves. Clim Dyn. doi:10.1007/s00382-011-0997-1
  13. Garric G, Douville H, Déqué M (2002) Prospects for improved seasonal forecasts of monsoon precipitation over Sahel. Int J Climatol 22:331–345CrossRefGoogle Scholar
  14. Goosse H (2010) Description of the earth system model of intermediate complexity LOVECLIM version 1.2. Geosci Model Dev 3:309–390. doi:10.5194/gmdd-3-309-2010
  15. Grose WL, Hoskins BJ (1979) On the influence of orography on large-scale atmospheric flow. J Atmos Sci 36:223–234CrossRefGoogle Scholar
  16. Guan Z, Yamagata T (2003) The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys Res Lett. doi:10.1029/2002GL016831
  17. Guo ZT, Liu TS, Fedoroff N, Wei LY, Ding ZL, Wu NQ, Lü HY, Jiang WY, An ZS (1998) Climate extremes in loess of China coupled with the strength of deep-water formation in the North Atlantic. Global Planet Change 18:113–128CrossRefGoogle Scholar
  18. Guo ZT, Berger A, Yin QZ, Qin L (2009) Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records. Clim Past 5:21–31CrossRefGoogle Scholar
  19. Hoskins BJ, Simmons AJ, Andrews DG (1977) Energy dispersion in a barotropic atmosphere. Q J R Meteorol Soc 103:553–567Google Scholar
  20. Hsu HH, Lin SM (2007) Asymmetry of the tripole rainfall pattern during the East Asian summer. J Clim 20:4443–4458CrossRefGoogle Scholar
  21. Hsu HH, Liu X (2003) Relationship between the Tibetan Plateau heating and East Asian summer monsoon rainfall. Geophys Res Lett 30:2066. doi:10.1029/2003GL017909 CrossRefGoogle Scholar
  22. Hu ZZ, Latif M, Roeckner E, Bengtsson L (2000) Intensified Asian summer monsoon and its variability in a coupled model forced by increasing greenhouse gas concentrations. Geophys Res Lett 27(17):2681–2684CrossRefGoogle Scholar
  23. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  24. IPCC Climate Change 2007 (2007) “The physical science basis”, summary for policymakers, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate changeGoogle Scholar
  25. Jouzel J et al (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317(5839):793–796CrossRefGoogle Scholar
  26. Kriplani RH, Oh JH, Kang JH, Sabade SS, Kulkarni A (2005) Extreme monsoons over East Asia: possible role of Indian Ocean zonal mode. Theor Appl Climatol 82:81–94CrossRefGoogle Scholar
  27. Kukla G, An ZS, Melice JL, Gavin J, Xiao JL (1990) Magnetic susceptibility record of Chinese loess. Trans R Soc Edinb Earth Sci 81:263–288CrossRefGoogle Scholar
  28. Li F, Ding YH (2004) A statistical study of blocking highs in Eurasia in summer by using 30 year NCEP datasets (in Chinese). Acta Meteorol Sin 62:347–354Google Scholar
  29. Lisiecki LE, Raymo ME (2005) A pliocene-pleistocene stack of 57 globally distributed benthic delta δ 18 O records. Paleoceanography 20(1): PA1003. doi:10.1029/2004PA001071
  30. Manabe S, Broccoli AJ (1985) The influence of continental ice sheets on the climate of an ice age. J Geophys Res 90:2167–2190CrossRefGoogle Scholar
  31. Météo-France (2003) ARPEGE-Climate version4. Algorithmic documentation. Center National de Recherches MeteorologiquesGoogle Scholar
  32. Ogi M, Tachibana Y, Yamazaki K (2003) Impact of the wintertime North Atlantic Oscillation (NAO) on the summertime atmospheric circulation. Geophys Res Lett 30(13):1704. doi:10.1029/2003GL017280 Google Scholar
  33. Overpeck J, Anderson D, Trumbore S, Prell W (1996) The southwest Indian monsoon over the last 18,000 years. Clim Dynm 12:213–225CrossRefGoogle Scholar
  34. Peng S, Robinson WA, Li S (2002) North Atlantic SST forcing of the NAO and relationships with intrinsic hemispheric variability. Geophys Res Lett 29:1276. doi:10.1029/2001GL014043 CrossRefGoogle Scholar
  35. Rodwell MJ, Rowell DP, Folland CK (1999) Oceanic forcing of the Wintertime North Atlantic Oscillation and European climate. Nature 398:320–323CrossRefGoogle Scholar
  36. Rossignol-Strick M, Paterne M, Bassinot FC, Emeis KC, De Lange GJ (1998) An unusual mid-pleistocene monsoon period over Africa and Asia. Nature 392:269–272CrossRefGoogle Scholar
  37. Sardeshmukh PD, Hoskins BJ (1988) The generation of global rotational flow by steady idealised tropical divergence. J Atmos 45:1228–1251CrossRefGoogle Scholar
  38. Sirocko F, Sarnthein M, Lange H, Erlenkeuser H (1991) Atmospheric summer circulation and coastal upwelling in the Arabian Sea during the Holocene and the last glaciation. Quat Res 36:72–93CrossRefGoogle Scholar
  39. Sun JQ, Wang HJ, Yuan W (2008) Decadal variations of the relationship between the summer North Atlantic oscillation and Middle East Asian air temperature. J Geophys Res 113:D15107. doi:10.1029/2007JD009626 CrossRefGoogle Scholar
  40. Sung MK, Kwon WT, Baek HJ, Boo KO, Lim GH, Kug JS (2006) A possible impact of the North Atlantic oscillation on the East Asian summer monsoon precipitation. Geophys Res Lett 33:L21713. doi:10.1029/2006GL027253 CrossRefGoogle Scholar
  41. Takeaki S, Xie SP (2010) Large-scale dynamics of the meiyu-baiu rainband: environmental forcing by the westerly jet. J Clim 23:113–134CrossRefGoogle Scholar
  42. Tao S, Chen L (1987) A review of recent research on the East Asian summer monsoon in China. In: Chang CP, Krishnamurti TN (eds) Monsoon meteorology, Oxford monographs on geology and geophysics. Oxford University Press, New York, pp 60–92Google Scholar
  43. Vernekar AD, Shukla J (1995) The effect of Eurasian snow cover on the Indian monsoon. J Clim 8:248–266CrossRefGoogle Scholar
  44. Wang Y(1992) Effects of blocking anticyclones in Eurasia in the rainy season (Meiyu/Baiu season). J Meteor Soc Jpn 70:929–951Google Scholar
  45. Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536CrossRefGoogle Scholar
  46. Wang B, Wu Z, Li J, Liu J, Chang CP, Ding Y, Wu G (2008) How to measure the strength of the East Asian summer monsoon? J Clim 21:4449–4463. doi:10.1175/2008JCLI2183.1 CrossRefGoogle Scholar
  47. Watanabe M (2004) Asian jet waveguide and a downstream extension of the North Atlantic Oscillation. J Clim 17:4469–4674. doi:10.1175/JCLI-3228.1 Google Scholar
  48. Wu R (2002) A mid-latitude Asian circulation anomaly pattern in boreal summer and its connection with the Indian and East Asian summer monsoons. Int J Clim 22:1879–1895. doi:10.1002/joc.845 CrossRefGoogle Scholar
  49. Wu Z, Wang B, Li J, Jin FF (2009) An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J Geophys Res 114:D18120. doi:10.1029/2009JD011733 CrossRefGoogle Scholar
  50. Yin QZ, Guo ZT (2006) Mid-Pleistocene vermiculated red soils in southern China as an indication of unusually strengthened East Asian monsoon. Chin Sci Bull 51(2):213–220Google Scholar
  51. Yin QZ, Guo ZT (2008) Strong summer monsoon during the cool MIS-13. Clim Past 4:29–34CrossRefGoogle Scholar
  52. Yin QZ, Berger A, Driesschaert E, Goosse H, Loutre MF, Crucifix M (2008) The Eurasian ice sheet reinforces the East Asian summer monsoon during the interglacial 500,000 years ago. Clim Past 4:79–90CrossRefGoogle Scholar
  53. Yin QZ, Berger A, Crucifix M (2009) Individual and combined effects of ice sheets and precession on MIS-13 climate. Clim Past 5:229–243CrossRefGoogle Scholar
  54. Zhang QY, Tao SY (1998) Influence of Asian mid-high latitude circulation on East Asian summer rainfall. Acta Meteorol Sin 56:1211–1999Google Scholar
  55. Zhang RH, Sumi A, Kimoto M (1999) A diagnostic study of the impact of El Niño on the precipitation in China. Adv Atmos Sci 16:229–241CrossRefGoogle Scholar
  56. Zhou T et al (2009) Why the western pacific subtropical high has extended westward since the late 1970s. J Clim 22:2199–2215. doi:10.1175/2008JCLI2527.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Earth and Life Institute (ELI), Georges Lemaitre Centre for Earth and Climate Research (TECLIM)Université Catholique de LouvainLouvain la NeuveBelgium

Personalised recommendations