Advertisement

Climate Dynamics

, Volume 39, Issue 1–2, pp 165–183 | Cite as

Storm surges in the Western Baltic Sea: the present and a possible future

  • Ulf GräweEmail author
  • Hans Burchard
Article

Abstract

Globally-coupled climate models are generally capable of reproducing the observed trends in the globally averaged atmospheric temperature or mean sea level. However, the global models do not perform as well on regional/local scales. Here, we present results from four 100-year ocean model experiments for the Western Baltic Sea. In order to simulate storm surges in this region, we have used the General Estuarine Transport Model (GETM) as a high-resolution local model (spatial resolution ≈ 1 km), nested into a regional atmospheric and regional oceanic model in a fully baroclinic downscaling approach. The downscaling is based on the global model ECHAM5/MPI-OM. The projections are imbedded into two greenhouse-gas emission scenarios, A1B and B1, for the period 2000–2100, each with two realisations. Two control runs from 1960 to 2000 are used for validation. We use this modelling system to statistically reproduce the present distribution of surge extremes. The usage of the high-resolution local model leads to an improvement in surge heights of at least 10% compared to the driving model. To quantify uncertainties associated with climate projections, we investigate the impact of enhanced wind velocities and changes in mean sea levels. The analysis revealed a linear dependence of surge height and mean sea level, although the slope parameter is spatially varying. Furthermore, the modelling system is used to project possible changes within the next century. The results show that the sea level rise has greater potential to increase surge levels than does increased wind speed. The simulations further indicate that the changes in storm surge height in the scenarios can be consistently explained by the increase in mean sea level and variation in wind speed.

Keywords

Extreme values Climate change Baltic Sea Storm surges Return values 

Notes

Acknowledgments

Gauge data were kindly provided by the German Federal Maritime and Hydrographic Agency (BSH), the Danish Maritime Safety Administration (DaMSA) and the Swedish Meteorological and Hydrological Institute (SMHI). Supercomputing power was provided by HLRN (Norddeutscher Verbund für Hoch-und Höchstleistungsrechnen). We are grateful to Karsten Bolding (Asperup, Denmark) for the code maintenance of GETM.

References

  1. Ådlandsvik B, Bentsen M (2007) Downscaling a twentieth century global climate simulation to the North Sea. Ocean Dyn 57(4):453–466CrossRefGoogle Scholar
  2. Alexandersson H, Tuomenvirta H, Smith H, Iden K (2000) Trends of storms in NW Europe derived from an updated pressure data set. Clim Res 14:71–73CrossRefGoogle Scholar
  3. An Y, Pandey M (2005) A comparison of methods of extreme wind speed estimation. J Wind Eng Ind Aerodyn 93(7):535–545CrossRefGoogle Scholar
  4. An Y, Pandey M (2007) The r-largest order statistics model for extreme wind speed estimation. J Wind Eng Ind Aerodyn 95(3):165–182CrossRefGoogle Scholar
  5. Anderson HC (2002) Influence of long-term regional and large-scale atmospheric circulation on the Baltic sea level. Tellus A 54(1):76–88CrossRefGoogle Scholar
  6. Baensch O (1875) Die Sturmflut an den Ostsee-Küsten des Preussischen Staates vom 12/13. November 1872. Zeitschrift für, BauwesenGoogle Scholar
  7. Baerens C, Hupfer P (1999) Extremwasserstände an der deutschen Ostseeküste nach Beobachtungen und in einem Treibhausgasszenario. Die Küste 61Google Scholar
  8. Barbosa SM (2008) Quantile trends in Baltic sea level. Geophys Res Lett 35(22):L22, 704CrossRefGoogle Scholar
  9. Beckley BD, Lemoine FG, Luthcke SB, Ray RD, Zelensky NP (2007) A reassessment of global and regional mean sea level trends from TOPEX and Jason-1 altimetry based on revised reference frame and orbits. Geophys Res Lett 34:L14, 608CrossRefGoogle Scholar
  10. Beckmann A, Döscher R (1997) A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J Phys Oceanogr 27(4):581–591CrossRefGoogle Scholar
  11. Beniston M, Stephenson D, Christensen O, Ferro C, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:75–89CrossRefGoogle Scholar
  12. Bernier N, Thompson K, Ou J, Ritchie H (2007) Mapping the return periods of extreme sea levels: allowing for short sea level records, seasonality, and climate change. Glob Planet Change 57(1–2):139–150CrossRefGoogle Scholar
  13. Brown JM, Souza A, Wolf J (2010) Surge modelling in the eastern Irish Sea: present and future storm impact. Ocean Dyn 60(2):227–236CrossRefGoogle Scholar
  14. Burchard H, Bolding K (2001) Comparative analysis of four second-moment turbulence closure models for the oceanic mixed layer. J Phys Oceanogr 31(8):1943–1968CrossRefGoogle Scholar
  15. Burchard H, Bolding K (2002) GETM—a general estuarine transport model. Scientific documentation. Technical report EUR 20253 EN. Technical report, European Commission.Google Scholar
  16. Burchard H, Rennau H (2008) Comparative quantification of physically and numerically induced mixing in ocean models. Ocean Model 20(3):293–311CrossRefGoogle Scholar
  17. Burchard H, Janssen F, Bolding K, Umlauf L, Rennau H (2009) Model simulations of dense bottom currents in the Western Baltic Sea. Cont Shelf Res 29(1):205–220CrossRefGoogle Scholar
  18. Butler A, Heffernan JE, Tawn JA, Flather RA, Horsburgh KJ (2007) Extreme value analysis of decadal variations in storm surge elevations. J Mar Syst 67(1–2):189–200CrossRefGoogle Scholar
  19. Canuto VM, Howard A, Cheng Y, Dubovikov MS (2001) Ocean turbulence. Part I: one-point closure model. Momentum and heat vertical diffusivities. J Phys Oceanogr 31:1413–1426CrossRefGoogle Scholar
  20. Carter DJT, Challenor PG (1981) Estimating return values of environmental parameters. Q J R Meteorol Soc 107(451):259–266CrossRefGoogle Scholar
  21. Cazenave A, Dominh K, Guinehut S, Berthier E, Llovel W, Ramillien G, Ablain M, Larnicol G (2009) Sea level budget over 2003–2008: a reevaluation from GRACE space gravimetry, satellite altimetry and argo. Glob Planet Change 65(1–2):83–88CrossRefGoogle Scholar
  22. Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 81(0):7–30CrossRefGoogle Scholar
  23. Church J, White N, Aarup T, Wilson W, Woodworth P, Domingues C, Hunter J, Lambeck K (2008) Understanding global sea levels: past, present and future. Sustain Sci 3:9–22CrossRefGoogle Scholar
  24. Church JA, White NJ, Coleman R, Lambeck K, Mitrovica JX (2004) Estimates of the regional distribution of sea level rise over the 1950–2000 period. J Clim 17(13):2609–2625CrossRefGoogle Scholar
  25. CLM (2008) Climate limited-area modelling community. http://www.clm-community.eu
  26. Coles S (2001) An introduction to statistical modeling of extreme values, 1st edn. Springer series in statistics. Springer, BerlinGoogle Scholar
  27. Davison AC, Smith RL (1990) Models for exceedances over high thresholds. J R Stat Soc B 52(3):393–442Google Scholar
  28. Ekman M, Mäkinen J (1996) Mean sea surface topography in the Baltic Sea and its transition area to the North Sea: a geodetic solution and comparisons with oceanographic models. J Geophys Res 101(C5):11, 993CrossRefGoogle Scholar
  29. Feistel R, Nausch G, Wasmund N (2008) State and evolution of the Baltic Sea, chemistry 1952–2005: a detailed 50-year survey of meteorlogy and climate, phyiscs, biology and marine environment. Wiley, New YorkGoogle Scholar
  30. Fennel W, Sturm M (1992) Dynamics of the western Baltic. J Mar Syst 3(1–2):183–205CrossRefGoogle Scholar
  31. Flather RA (1976) A tidal model of the northwest European continental shelf. Memoires de la Societe Royale de Sciences de Liege 10(6):141–164Google Scholar
  32. Flather RA, Smith J, Richards J, Bell C, Blackman D (1998) Direct estimates of extreme storm surge elevations from a 40-year numerical model simulation and from observations. Glob Atmos Ocean Syst 6:165–176Google Scholar
  33. Gräwe U, Burchard H (2011) Regionalisation of climate Scenarios for the Western Baltic Sea. In: Global change and Baltic coastal zones, Springer, DordrechtGoogle Scholar
  34. Gregory JM, Church JA, Boer GJ, Dixon KW, Flato GM, Jackett DR, Lowe JA, O’Farrell SP, Roeckner E, Russell GL, Stouffer RJ, Winton M (2001) Comparison of results from several AOGCMs for global and regional sea-level change 1900–2100. Clim Dyn 18:225–240CrossRefGoogle Scholar
  35. Griffies SM, Pacanowski RC, Schmidt M, Balaji V (2001) Tracer conservation with an explicit free surface method for z-coordinate ocean models. Mon Weather Rev 129(5):1081–1098CrossRefGoogle Scholar
  36. Gustafsson B (1997) Interaction between Baltic Sea and North Sea. Ocean Dyn 49:165–183Google Scholar
  37. Haigh I, Nicholls RJ, Wells N (2010) Assessing changes in extreme sea levels: application to the English Channel, 1900–2006. Cont Shelf Res 30(9):1042–1055CrossRefGoogle Scholar
  38. Haigh ID, Nicholls R, Wells N (2010) A comparison of the main methods for estimating probabilities of extreme still water levels. Coast Eng 57(9):838–849CrossRefGoogle Scholar
  39. Hallegatte S, Ranger N, Mestre O, Dumas P, Corfee-Morlot J, Herweijer C, Wood R (2010) Assessing climate change impacts, sea level rise and storm surge risk in port cities: a case study on Copenhagen. Clim Change 1–25Google Scholar
  40. Hanson H, Larson M (2008) Implications of extreme waves and water levels in the southern Baltic Sea. J Hydraul Res 46(2):292–302CrossRefGoogle Scholar
  41. HELCOM (1986) In: Proceedings of water balance of the Baltic Sea, 16, HELCOM, Baltic Sea environmentGoogle Scholar
  42. Heyen H, Zorita E, von Storch H (1996) Statistical downscaling of monthly mean North Atlantic air-pressure to sea level anomalies in the Baltic Sea. Tellus A 48(2):312–323CrossRefGoogle Scholar
  43. Holt J, Wakelin S, Lowe J, Tinker J (2010) The potential impacts of climate change on the hydrography of the northwest European continental shelf. Prog Oceanogr 86(3–4):361–379CrossRefGoogle Scholar
  44. Horsburgh KJ, Wilson C (2007) Tide-surge interaction and its role in the distribution of surge residuals in the North Sea. J Geophys Res 112(C08)Google Scholar
  45. Hünicke B, Luterbacher J, Pauling A, Zorita E (2008) Regional differences in winter sea level variations in the Baltic Sea for the past 200 years. Tellus A 60(2):384–393CrossRefGoogle Scholar
  46. Hupfer P, Harff J, Sterr H, Stigge HJ (2003) Die Wasserstände an der Ostsee, Entwicklung–Sturmfluten–Klimawandel. Die Küste 66Google Scholar
  47. IPCC (2007) Climate change 2007—The physical science basis: working group I contribution to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  48. Jacob D, Bärring L, Christensen OB, Christensen JH, de Castro M, Déqué M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sánchez E, Schär C, Seneviratne S, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81(0):31–52CrossRefGoogle Scholar
  49. Jevrejeva S, Moore JC, Woodworth PL, Grinsted A (2005) Influence of large-scale atmospheric circulation on European sea level: results based on the wavelet transform method. Tellus A 57:183–193CrossRefGoogle Scholar
  50. Johansson MM, Kahma KK, Boman H, Launiainen J (2004) Scenarios for sea level on the Finnish coast. Boreal Environ Res 9(2):153–166Google Scholar
  51. Jones J, Davies A (2007) Influence of non-linear effects upon surge elevations along the west coast of Britain. Ocean Dyn 57:401–416CrossRefGoogle Scholar
  52. Jones J, Davies A (2009) Storm surge computations in estuarine and near-coastal regions: the Mersey estuary and Irish Sea area. Ocean Dyn 59:1061–1076CrossRefGoogle Scholar
  53. Jönsson B, Döös K, Nycander J, Lundberg P (2008) Standing waves in the Gulf of Finland and their relationship to the basin-wide Baltic seiches. J Geophys Res 113(C3):C03,004CrossRefGoogle Scholar
  54. Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo JJ, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19(16):3952–3972CrossRefGoogle Scholar
  55. Katz RW, Parlange MB, Naveau P (2002) Statistics of extremes in hydrology. Adv Water Resour 25(8–12):1287–1304CrossRefGoogle Scholar
  56. Kendall MG (1975) Rank correlation methods. Griffin, LondonGoogle Scholar
  57. Kjellström E (2004) Recent and future signatures of climate change in Europe. Ambio 33(4–5):193–198Google Scholar
  58. Kjellström E, Nikulin G, Hansson U, Strandberg G, Ullerstig A (2011) 21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations. Tellus A 63:24–40CrossRefGoogle Scholar
  59. Kowalewska-Kalkowska H, Wisniewski B (2009) Storm surges in the Odra mouth area during the 1997–2006 decade. Boreal Environ Res 14:183–192Google Scholar
  60. Landerer FW, Jungclaus JH, Marotzke J (2007) Regional dynamic and steric sea level change in response to the IPCC-A1B scenario. J Phys Oceanogr 37(2):296–312CrossRefGoogle Scholar
  61. Langenberg H, Pfizenmayer A, von Storch H, Sündermann J (1999) Storm-related sea level variations along the North Sea coast: natural variability and anthropogenic change. Cont Shelf Res 19(6):821–842CrossRefGoogle Scholar
  62. Lass HU, Mohrholz V (2003) On the dynamics and mixing of inflowing saltwater in the Arkona Sea. J Geophys Res 108(C2):1–15CrossRefGoogle Scholar
  63. Leadbetter MR (1991) On a basis for ’Peaks over Threshold’ modeling. Stat Probab Lett 12(4):357–362CrossRefGoogle Scholar
  64. Lehmann A, Getzlaff K, Jan Harlass (2011) Detailed assessment of climate variability of the Baltic Sea area for the period 1958–2009. Clim Res 46:185–196CrossRefGoogle Scholar
  65. Letetrel C, Marcos M, Martín-Míguez B, Woppelmann G (2010) Sea level extremes in Marseille (NW Mediterranean) during 1885–2008. Cont Shelf Res 30(12):1267–1274CrossRefGoogle Scholar
  66. Lowe JA, Gregory JM (2010) A sea of uncertainty. Nat Geosci (1004):42–43Google Scholar
  67. Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259CrossRefGoogle Scholar
  68. Matthäus W, Franck H (1992) Characteristics of major Baltic inflows—a statistical analysis. Cont Shelf Res 12(12):1375–1400CrossRefGoogle Scholar
  69. Meier HEM, Boman B, Kjellström E (2004) Simulated sea level in past and future climates of the Baltic Sea. Clim Res 27(1):59–75CrossRefGoogle Scholar
  70. Meier HEM, Kjellström E, Graham LP (2006) Estimating uncertainties of projected Baltic Sea salinity in the late 21st century. Geophys Res Lett 33:L15, 705CrossRefGoogle Scholar
  71. Meier M, Feistel R, Piechura J, Arneborg L, Burchard H, Fiekas V, Golenko N, Kuzmina N, Mohrholz V, Nohr C, Paka VT, Sellschopp J, Stips A, Zhurbas V (2006) Ventilation of the Baltic Sea deep water: a brief review of present knowledge from observations and models. Oceanologia 48:133–164Google Scholar
  72. Melsom A, Lien VS, Budgell WP (2009) Using the Regional Ocean Modeling System (ROMS) to improve the ocean circulation from a GCM 20th century simulation. Ocean Dyn 59(6):969–981CrossRefGoogle Scholar
  73. Mínguez R, Menéndez M, Méndez F, Losada I (2010) Sensitivity analysis of time-dependent generalized extreme value models for ocean climate variables. Adv Water Resour 33(8):833–845CrossRefGoogle Scholar
  74. Munich Re (2008) Highs and lows—weather risks in central Europe, Munich Re, Knowledge Series, p 56Google Scholar
  75. Munk W (2002) Twentieth century sea level: an enigma. Proc Natl Acad Sci USA 99(10):6550–6555Google Scholar
  76. Naess A, Clausen PH (2002) The impact of data accuracy on the POT estimates of long return period design values. J Offshore Mech Arctic Eng 124(1):53–58CrossRefGoogle Scholar
  77. Neumann G (1941) Eigenschwingungen der Ostsee. Deutsche Seewarte, BerlinGoogle Scholar
  78. Neumann T (2010) Climate-change effects on the Baltic Sea ecosystem: a amodel study. J Mar Syst 81(3):213–224CrossRefGoogle Scholar
  79. Nikulin G, Kjellström E, Hansson U, Strandberg G, Ullerstig A (2011) Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A 63(1):41–55CrossRefGoogle Scholar
  80. Omstedt A, Pettersen C, Rodhe J, Winsor P (2004) Baltic Sea climate: 200 years of data on air temperature, sea level variation, ice cover, and atmospheric circulation. Clim Res 25(3):205–216CrossRefGoogle Scholar
  81. Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput Geosci 28:929–937CrossRefGoogle Scholar
  82. Pickands J (1975) Statistical inference using extreme order statistics. Ann Stat 3(1):119–131CrossRefGoogle Scholar
  83. Prandle D, Wolf J (1978) The interaction of surge and tide in the North Sea and River Thames. Geophys J R Astron Soc 55(1):203–216CrossRefGoogle Scholar
  84. Radic V, Hock R (2011) Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nat Geosci 4(2):91–94CrossRefGoogle Scholar
  85. Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315(5810):368–370CrossRefGoogle Scholar
  86. Räisänen J, Hansson U, Ullerstig A, Döscher R, Graham L, Jones C, Meier HEM, Samuelsson P, Willén U (2004) European climate in the late twenty-first century: regional simulations with two driving global models and two forcing scenarios. Clim Dyn 22:13–31CrossRefGoogle Scholar
  87. Rosenhagen G, Bork I (2009) Rekonstruktion der Sturmflutwetterlage vom 13. November 1872. Die Küste 75:51–70Google Scholar
  88. Samuelsson M, Stigebrandt A (1996) Main characteristics of the long-term sea level variability in the Baltic sea. Tellus A 48(5):672–683CrossRefGoogle Scholar
  89. Schinke H (1993) On the occurence of deep cyclones over Europe and the North Atlantic in the period 1930–1991. Beiträge zur Physik der Atmosphäre 66:223–237Google Scholar
  90. Schmidt M, Seifert T, Lass H, Fennel W (1998) Patterns of salt propagation in the Southwestern Baltic Sea. Ocean Dyn 50:345–364Google Scholar
  91. Schmith T, Kaas E, Li TS (1998) Northeast Atlantic winter storminess 1875–1995 re-analysed. Clim Dyn 14:529–536CrossRefGoogle Scholar
  92. Shane RM, Lynn WR (1964) Mathematical model for flood risk evaluation. J Hydraul Eng 90:1–20Google Scholar
  93. Smith RL (1986) Extreme value theory based on the r largest annual events. J Hydrol 86(1–2):27–43CrossRefGoogle Scholar
  94. Soares CG, Scotto MG (2004) Application of the r largest-order statistics for long-term predictions of significant wave height. Coast Eng 51(5-6):387–394CrossRefGoogle Scholar
  95. Sobey RJ, Orloff LS (1995) Triple annual maximum series in wave climate analyses. Coast Eng 26(3-4):135–151CrossRefGoogle Scholar
  96. Stigge HJ (1994) Die Wasserstände an der Küste Mecklenburg-Vorpommerns. Die Küste 56Google Scholar
  97. Suursaar Ü, Kullas T, Otsmann M, Kuts T (2003) Extreme sea level events in the coastal waters of western Estonia. J Sea Res 49(4):295–303CrossRefGoogle Scholar
  98. Tawn JA (1988) An extreme-value theory model for dependent observations. J Hydrol 101(1-4):227–250CrossRefGoogle Scholar
  99. Todorovic P, Zelenhasic E (1970) A stochastic model for flood analysis. Water Resour Res 6:1641–1648CrossRefGoogle Scholar
  100. Tol RSJ, Klein RJT, Nicholls RJ (2008) Towards successful adaptation to sea-level rise along Europe’s coasts. J Coast Res 242:432–442CrossRefGoogle Scholar
  101. Umlauf L, Burchard H, Bolding K (2006) General ocean turbulence model. Source code documentation. Technical Report 63. Technical report, Baltic Sea Research Institute Warnemünde, Warnemünde, GermanyGoogle Scholar
  102. van den Brink H, Können G, Opsteegh J (2005) Uncertainties in extreme surge level estimates from observational records. Philos Transact A Math Phys Eng Sci 363(1831):1377–1386CrossRefGoogle Scholar
  103. Vilibic I, Sepic J (2010) Long-term variability and trends of sea level storminess and extremes in European Seas. Glob Planet Change 71(1–2):1–12CrossRefGoogle Scholar
  104. Weisse R, von Storch H, Callies U, Chrastansky A, Feser F, Grabemann I, Günther H, Winterfeldt J, Woth K, Pluess A, Stoye T, Tellkamp J (2009) Regional meteorological—marine reanalyses and climate change projections. Bull Am Meteorol Soc 90(6):849–860CrossRefGoogle Scholar
  105. Weissman J (1978) Estimation of parameters and larger quantiles based on the k largest observations. J Am Stat Assoc 73(364)Google Scholar
  106. West J, Small M, Dowlatabadi H (2001) Storms, investor decisions, and the economic impacts of sea level rise. Clim Change 48:317–342CrossRefGoogle Scholar
  107. Wiśniewski B, Wolski T (2011) Physical aspects of extreme storm surges and falls on the Polish coast. Oceanologia 53(1):373–390CrossRefGoogle Scholar
  108. Woodworth PL (2006) Some important issues to do with long-term sea level change. Philos Transact A Math Phys Eng Sci 364(1841):787–803CrossRefGoogle Scholar
  109. Woodworth PL, Blackman DL (2004) Evidence for systematic changes in extreme high waters since the mid-1970s. J Clim 17(6):1190–1197CrossRefGoogle Scholar
  110. Woth K, Weisse R, von Storch H (2006) Climate change and North Sea storm surge extremes: an ensemble study of storm surge extremes expected in a changed climate projected by four different regional climate models. Ocean Dyn 56:3–15CrossRefGoogle Scholar
  111. Wyrtki K (1954) Schwankungen im Wasserhaushalt der Ostsee. Ocean Dyn 7:91–129Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Leibniz Institute for Baltic Sea ResearchWarnemündeGermany

Personalised recommendations