Climate Dynamics

, Volume 38, Issue 11–12, pp 2377–2388 | Cite as

A multimodel comparison of centennial Atlantic meridional overturning circulation variability

  • Matthew B. MenaryEmail author
  • Wonsun Park
  • Katja Lohmann
  • Michael Vellinga
  • Matthew D. Palmer
  • Mojib Latif
  • Johann H. Jungclaus


A mechanism contributing to centennial variability of the Atlantic Meridional Overturning Circulation (AMOC) is tested with multi-millennial control simulations of several coupled general circulation models (CGCMs). These are a substantially extended integration of the 3rd Hadley Centre Coupled Climate Model (HadCM3), the Kiel Climate Model (KCM), and the Max Plank Institute Earth System Model (MPI-ESM). Significant AMOC variability on time scales of around 100 years is simulated in these models. The centennial mechanism links changes in the strength of the AMOC with oceanic salinities and surface temperatures, and atmospheric phenomena such as the Intertropical Convergence Zone (ITCZ). 2 of the 3 models reproduce all aspects of the mechanism, with the third (MPI-ESM) reproducing most of them. A comparison with a high resolution paleo-proxy for Sea Surface Temperatures (SSTs) north of Iceland over the last 4,000 years, also linked to the ITCZ, suggests that elements of this mechanism may also be detectable in the real world.


AMOC MOC Overturning North Atlantic Centennial variability ITCZ 



The research leading to these results has received funding from the European Community’s 7th framework programme (FP7/2007-2013) under grant agreement No. GA212643 (THOR: "Thermohaline Overturning—at Risk", 2008–2012) and was supported by the Joint DECC and Defra Hadley Centre Climate Programme, DECC/Defra (GA01101) and the German BMBF NORDATLANTIK project. The authors would like to thank Paul Halloran and Laura Jackson for valuable discussion.


  1. Bracewell R (1989) The fourier-transform. Sci Am 260(6):86CrossRefGoogle Scholar
  2. Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJM, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5 degrees N. Science 317(5840):935–938. doi: 10.1126/science.1141304 CrossRefGoogle Scholar
  3. Delworth T, Dixon K (2000) Implications of the recent trend in the Arctic/North Atlantic oscillation for the North Atlantic thermohaline circulation. J Clim 13(21):3721–3727CrossRefGoogle Scholar
  4. Dong B, Sutton R (2005) Mechanism of interdecadal thermohaline circulation variability in a coupled ocean-atmosphere GCM. J Clim 18(8):1117–1135CrossRefGoogle Scholar
  5. Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408(6811):453–457CrossRefGoogle Scholar
  6. Gordon C, Cooper C, Senior C, Banks H, Gregory J, Johns T, Mitchell J, Wood R (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16(2–3):147–168CrossRefGoogle Scholar
  7. Gregory J, Dixon K, Stouffer R, Weaver A, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus J, Kamenkovich I, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Sokolov A, Thorpe R (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32(12). doi: 10.1029/2005GL023209
  8. Haug G, Hughen K, Sigman D, Peterson L, Rohl U (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293(5533):1304–1308CrossRefGoogle Scholar
  9. Josey S, Kent E, Taylor P (2002) Wind stress forcing of the ocean in the SOC climatology: comparisons with the NCEP-NCAR, ECMWF, UWM/COADS, and Hellerman and Rosenstein datasets. J Phys Oceanogr 32(7):1993–2019CrossRefGoogle Scholar
  10. Jungclaus J, Haak H, Latif M, Mikolajewicz U (2005) Arctic-North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18(19):4013–4031CrossRefGoogle Scholar
  11. Jungclaus JH, Lorenz SJ, Timmreck C, Reick CH, Brovkin V, Six K, Segschneider J, Giorgetta MA, Crowley TJ, Pongratz J, Krivova NA, Vieira LE, Solanki SK, Klocke D, Botzet M, Esch M, Gayler V, Haak H, Raddatz TJ, Roeckner E, Schnur R, Widmann H, Claussen M, Stevens B, Marotzke J (2010) Climate and carbon-cycle variability over the last millennium. Clim Past Discuss 6:1009–1044CrossRefGoogle Scholar
  12. Kanzow T, Cunningham SA, Rayner D, Hirschi JJM, Johns WE, Baringer MO, Bryden HL, Beal LM, Meinen CS, Marotzke J (2007) Observed flow compensation associated with the MOC at 26.5 degrees N in the Atlantic. Science 317(5840):938–941. doi: 10.1126/science.1141293 CrossRefGoogle Scholar
  13. Kanzow T, Cunningham SA, Johns WE, Hirschi JJM, Marotzke J, Baringer MO, Meinen CS, Chidichimo MP, Atkinson C, Beal LM, Bryden HL, Collins J (2010) Seasonal variability of the Atlantic Meridional overturning circulation at 26.5 degrees N. J Clim 23(21):5678–5698. doi: 10.1175/2010JCLI3389.1 CrossRefGoogle Scholar
  14. Kilbourne KH, Quinn TM, Webb R, Guilderson T, Nyberg J, Winter A (2008) Paleoclimate proxy perspective on Caribbean climate since the year 1751: evidence of cooler temperatures and multidecadal variability. Paleoceanography 23(3). doi: 10.1029/2008PA001598
  15. Koltermann K, Sokov A, Tereschenkov V, Dobroliubov S, Lorbacher K, Sy A (1999) Decadal changes in the thermohaline circulation of the North Atlantic. Deep Sea Res Part II Top Stud Oceanogr 46(1–2):109–138CrossRefGoogle Scholar
  16. Latif M (2001) Tropical Pacific/Atlantic Ocean interactions at multi-decadal time scales. Geophys Res Lett 28(3):539–542CrossRefGoogle Scholar
  17. Latif M, Roeckner E, Mikolajewicz U, Voss R (2000) Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation. J Clim 13(11):1809–1813CrossRefGoogle Scholar
  18. Latif M, Boening C, Willebrand J, Biastoch A, Dengg J, Keenlyside N, Schweckendiek U, Madec G (2006) Is the thermohaline circulation changing. J Clim 19(18):4631–4637CrossRefGoogle Scholar
  19. Mayer D, Weisberg R (1993) A description of coads surface meteorological fields and the implied sverdrup transports for the Atlantic-ocean from 30-degrees-s To 60-degrees-n. J Phys Oceanogr 23(10):2201–2221CrossRefGoogle Scholar
  20. McManus J, Francois R, Gherardi J, Keigwin L, Brown-Leger S (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428(6985):834–837. doi: 10.1038/nature02494 CrossRefGoogle Scholar
  21. Mignot J, Ganopolski A, Levermann A (2007) Atlantic subsurface temperatures: response to a shutdown of the overturning circulation and consequences for its recovery. J Clim 20(19):4884–4898. doi: 10.1175/JCLI4280.1 CrossRefGoogle Scholar
  22. Moreno A, Stoll H, Jimenez-Sanchez M, Cacho I, Valero-Garces B, Ito E, Edwards RL (2010) A speleothem record of glacial (25–11.6 kyr BP) rapid climatic changes from northern Iberian Peninsula. Global Plan Change 71(3–4, Sp. Iss. SI):218–231. doi: 10.1016/j.gloplacha.2009.10.002 Google Scholar
  23. Msadek R, Frankignoul C (2009) Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model. Clim Dyn 33(1):45–62. doi: 10.1007/s00382-008-0452-0 CrossRefGoogle Scholar
  24. Pardaens A, Vellinga M, Wu P, Ingleby B (2008) Large-scale Atlantic salinity changes over the last half-century: a model-observation comparison. J Clim 21(8):1698–1720. doi: 10.1175/2007JCLI1988.1 CrossRefGoogle Scholar
  25. Park W, Latif M (2008) Multidecadal and multicentennial variability of the meridional overturning circulation. Geophys Res Lett 35(22). doi: 10.1029/2008GL035779
  26. Park W, Latif M (2010) Pacific and Atlantic multidecadal variability in the Kiel Climate Model. Geophys Res Lett 37. doi: 10.1029/2010GL045560
  27. Park W, Keenlyside N, Latif M, Stroeh A, Redler R, Roeckner E, Madec G (2009) Tropical pacific climate and its response to global warming in the Kiel climate model. J Clim 22(1):71–92. doi: 10.1175/2008JCLI2261.1 CrossRefGoogle Scholar
  28. Pope V, Gallani M, Rowntree P, Stratton R (2000) The impact of new physical parametrizations in the Hadley centre climate model: HadAM3. Clim Dyn 16(2–3):123–146CrossRefGoogle Scholar
  29. Proctor C, Baker A, Barnes W (2002) A three thousand year record of North Atlantic climate. Clim Dyn 19(5–6):449–454. doi: 10.1007/s00383-002-0236-x Google Scholar
  30. Rahmstorf S (2003) The current climate. Nature 421(6924):699. doi: 10.1038/421699a CrossRefGoogle Scholar
  31. Risebrobakken B, Jansen E, Andersson C, Mjelde E, Hevroy K (2003) A high-resolution study of Holocene paleoclimatic and paleoceanographic changes in the Nordic Seas. Paleoceanography 18(1). doi: 10.1029/2002PA000764
  32. Risebrobakken B, Moros M, Ivanova EV, Chistyakova N, Rosenberg R (2010) Climate and oceanographic variability in the SW Barents Sea during the Holocene. Holocene 20(4):609–621. doi: 10.1177/0959683609356586 CrossRefGoogle Scholar
  33. Sicre MA, Yiou P, Eiriksson J, Ezat U, Guimbaut E, Dahhaoui I, Knudsen KL, Jansen E, Turon JL (2008) A 4500-year reconstruction of sea surface temperature variability at decadal time-scales off North Iceland. Quat Sci Rev 27(21–22):2041–2047. doi: 10.1016/j.quascirev.2008.08.009 CrossRefGoogle Scholar
  34. Stephens G (1990) On the relationship between water-vapor over the oceans and sea-surface temperature. J Clim 3(6):634–645CrossRefGoogle Scholar
  35. Vellinga M, Wood RA (2008) Impacts of thermohaline circulation shutdown in the twenty-first century. Clim Change 91(1–2):43–63. doi: 10.1007/s10584-006-9146-y CrossRefGoogle Scholar
  36. Vellinga M, Wu P (2004) Low-latitude freshwater influence on centennial variability of the Atlantic thermohaline circulation. J Clim 17(23):4498–4511CrossRefGoogle Scholar
  37. Wilks D (1997) Resampling hypothesis tests for autocorrelated fields. J Clim 10(1):65–82CrossRefGoogle Scholar
  38. Willis JK (2010) Can in situ floats and satellite altimeters detect long-term changes in Atlantic Ocean overturning? Geophys Res Lett 37. doi: 10.1029/2010GL042372
  39. Wood R, Vellinga M, Thorpe R (2003) Global warming and thermohaline circulation stability. Philos Transact R Soc Lond A Math Phys Eng Sci 361(1810):1961–1974. doi: 10.1098/rsta.2003.1245 CrossRefGoogle Scholar
  40. Wunsch C (2002) What is the thermohaline circulation. Science 298(5596):1179CrossRefGoogle Scholar
  41. Zanchettin D, Rubino A, Jungclaus JH (2010) Intermittent multidecadal-to-centennial fluctuations dominate global temperature evolution over the last millennium. Geophys Res Lett 37. doi: 10.1029/2010GL043717
  42. Zwiers F, VonStorch H (1995) Taking serial-correlation into account in tests of the mean. J Clim 8(2):336–351CrossRefGoogle Scholar

Copyright information

© Crown Copyright 2011

Authors and Affiliations

  • Matthew B. Menary
    • 1
    Email author
  • Wonsun Park
    • 2
  • Katja Lohmann
    • 3
  • Michael Vellinga
    • 1
  • Matthew D. Palmer
    • 1
  • Mojib Latif
    • 2
  • Johann H. Jungclaus
    • 3
  1. 1.Met Office Hadley CentreExeter, DevonUnited Kingdom
  2. 2.IFM-GEOMAR, Leibniz-Institut fuer MeereswissenschaftenKielGermany
  3. 3.Max Planck Inst MeteorolHamburgGermany

Personalised recommendations