Climate Dynamics

, Volume 39, Issue 1–2, pp 419–444 | Cite as

Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions

  • D. ZanchettinEmail author
  • C. Timmreck
  • H.-F. Graf
  • A. Rubino
  • S. Lorenz
  • K. Lohmann
  • K. Krüger
  • J. H. Jungclaus


Decadal and bi-decadal climate responses to tropical strong volcanic eruptions (SVEs) are inspected in an ensemble simulation covering the last millennium based on the Max Planck Institute—Earth system model. An unprecedentedly large collection of pre-industrial SVEs (up to 45) producing a peak annual-average top-of-atmosphere radiative perturbation larger than −1.5 Wm−2 is investigated by composite analysis. Post-eruption oceanic and atmospheric anomalies coherently describe a fluctuation in the coupled ocean–atmosphere system with an average length of 20–25 years. The study provides a new physically consistent theoretical framework to interpret decadal Northern Hemisphere (NH) regional winter climates variability during the last millennium. The fluctuation particularly involves interactions between the Atlantic meridional overturning circulation and the North Atlantic gyre circulation closely linked to the state of the winter North Atlantic Oscillation. It is characterized by major distinctive details. Among them, the most prominent are: (a) a strong signal amplification in the Arctic region which allows for a sustained strengthened teleconnection between the North Pacific and the North Atlantic during the first post-eruption decade and which entails important implications from oceanic heat transport and from post-eruption sea ice dynamics, and (b) an anomalous surface winter warming emerging over the Scandinavian/Western Russian region around 10–12 years after a major eruption. The simulated long-term climate response to SVEs depends, to some extent, on background conditions. Consequently, ensemble simulations spanning different phases of background multidecadal and longer climate variability are necessary to constrain the range of possible post-eruption decadal evolution of NH regional winter climates.


Strong tropical volcanic eruptions Coupled ocean–atmosphere North Atlantic Oscillation Meridional overturning circulation North Atlantic subpolar gyre Millennium simulations 



The authors thank Oliver Bothe, Jürgen Bader and Jochem Marotzke for useful comments on earlier versions of the manuscript, and Stefan Hagemann for providing river discharge data. The authors thank the two anonymous reviewers for their comments and suggestions. The research has been carried out as part of the MPI-M integrated projects “Millennium” and “Super Volcano”, and was partly funded by the ENIGMA project of the Max Planck Society (D.Z.). This work contributes to the European Community 7th framework program under grant agreement GA212643 (THOR: “Thermohaline Overturning—at Risk?”, 2008-212) and to the Sonderforschungsbereich 574 “Volatiles and Fluids in Subduction Zones” at Kiel University. The model simulations were carried out on the supercomputing system of the German Climate Computation Centre (DKRZ) in Hamburg. Data processing and storage was provided by the “Model & Data” group at MPI-M.


  1. Álvarez-García FJ, OrtizBevia MJ, CabosNarvaez WD (2011) On the structure and teleconnections of North Atlantic decadal variability. J Clim (in press)Google Scholar
  2. Athanasiadis PJ, Wallace JM, Wettstein JJ (2010) Patterns of wintertime jet stream variability and their relation to the storm tracks. J Atmos Sci 67:1361–1381. doi: 10.1175/2009JAS3270.1 CrossRefGoogle Scholar
  3. Barlyaeva TV, Mironova IA, Ponyavin DI (2009) Nature of decadal variations in the climatic data of the second half of the 20th century. Dokl Earth Sci 425A(3):419–423CrossRefGoogle Scholar
  4. Bellucci A, Gualdi S, Scoccimarro E, Navarra A (2008) NAO—ocean circulation interactions in a coupled general circulation model. Clim Dyn 31:759–777. doi: 10.1007/s00382-008-0408-4 CrossRefGoogle Scholar
  5. Bengtsson L, Hodges KI, Roeckner E, Brokopf R (2006) On the natural variability of the pre-industrial European climate. Clim Dyn 27:743–760. doi: 10.1007/s00382-006-0168-y CrossRefGoogle Scholar
  6. Bersch M (2002) North Atlantic Oscillation-induced changes of the upper layer circulation in the northern North Atlantic Ocean. J Geophys Res 107:3156. doi: 10.1029/2001JC000901 CrossRefGoogle Scholar
  7. Cagnazzo C, Manzini E (2009) Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European Region. J Clim 22:1223–1238CrossRefGoogle Scholar
  8. Christiansen B (2008) Volcanic eruptions, large-scale modes in the Northern Hemisphere, and the El Niño–Southern Oscillation. J Clim 21:910–922CrossRefGoogle Scholar
  9. Church JA, White NJ, Arblaster JM (2005) Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content. Nature 438(7064):74–77CrossRefGoogle Scholar
  10. Cole-Dai J (2010) Volcanoes and climate. Wiley interdisciplinary reviews. Clim Change 1:824–839CrossRefGoogle Scholar
  11. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289(5477):270–277CrossRefGoogle Scholar
  12. Crowley TJ, Criste TA, Smith NR (1993) Ressessment of Crete (Greeland) ice core acidity/volcanism link to climate change. Geophys Res Lett 20:209–212CrossRefGoogle Scholar
  13. Crowley TJ, Zielinski G, Vinther B, Udisti R, Kreutz K, Cole-Dai J, Castellano E (2008) Volcanism and the Little Ice Age. PAGES News 16:22–23Google Scholar
  14. D’Arrigo R, Wilson R, Tudhope A (2009) The impact of volcanic forcing on tropical temperatures during the past four centuries. Nat Geosci 2:51–56CrossRefGoogle Scholar
  15. Delworth TL, Ramaswamy V, Stenchikov GL (2005) The impact of aerosols on simulated ocean temperature and heat content in the 20th century. Geophys Res Lett 32:L24709. doi: 10.1029/2005GL024457 CrossRefGoogle Scholar
  16. Deser C, Walsh JE, Timlin MS (2000) Arctic sea ice variability in the context of recent atmospheric circulation trends. J Clim 13:617–633CrossRefGoogle Scholar
  17. Dickson R, Lazier J, Meincke J, Rhines P, Swift J (1996) Long-term coordinated changes in the convective activity of the North Atlantic. Prog Oceanogr 38:241–295CrossRefGoogle Scholar
  18. Dutton EG, Christy JR (1992) Solar radiative forcing at selected locations and evidence for global lower tropospheric cooling following the eruptions of El Chichon and Pinatubo. Geophys Res Lett 19(23):2313–2316. doi: 10.1029/92GL02495 CrossRefGoogle Scholar
  19. Emile-Geay J, Seager R, Cane MA, Cook ER, Haug HG (2008) Volcanoes and ENSO over the Past Millennium. J Clim 21:3134–3148. doi: 10.1175/2007JCLI1884.1 CrossRefGoogle Scholar
  20. Fischer E, Luterbacher J, Zorita E, Tett SFB, Casty C, Wanner H (2007) European climate response to tropical volcanic eruptions over the last half millennium. Geophys Res Lett 34:L05707. doi: 10.1029/2006GL027992 CrossRefGoogle Scholar
  21. Fortuin JPF, Kelder H (1998) An ozone climatology based on ozone sonde and satellite measurements. J Geophys Res 103(31):709–731, 734Google Scholar
  22. Gleckler PJ, AchutaRao K, Gregory JM, Santer BD, Taylor KE, Wigley TML (2006) Krakatoa lives: the effect of volcanic eruptions on ocean heat content and thermal expansion. Geophys Res Lett 33(17):L17702CrossRefGoogle Scholar
  23. Graf HF (1992) Arctic radiation deficit and climate variability. Clim Dyn 7:19–28CrossRefGoogle Scholar
  24. Graf HF, Zanchettin D (2011) Central Pacific El Niño, the “subtropical bridge” and Eurasian Climate. J Geophys Res (submitted)Google Scholar
  25. Graf HF, Kirchner I, Robock A, Schult I (1993) Pinatubo eruption winter climate effects: model versus observations. Clim Dyn 9:81–93Google Scholar
  26. Graf H-F, Li Q, Giorgetta MA (2007) Volcanic effects on climate: revisiting the mechanisms. Atmos Chem Phys 7:4503–4511CrossRefGoogle Scholar
  27. Groisman PY (1992) Possible regional climate consequences of the Pinatubo eruption: an empirical approach. Geophys Res Lett 19:1603–1606CrossRefGoogle Scholar
  28. Guilyardi E (2006) El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Clim Dyn 26:329–348Google Scholar
  29. Hátún H, Sandø AB, Drange H, Hansen B, Valdimarsson H (2005) Influence of the Atlantic Subpolar Gyre on the Thermohaline Circulation. Science 309(5742):1841–1844. doi: 10.1126/science.1114777 CrossRefGoogle Scholar
  30. Hegerl G, Luterbacher J, González-Rouco F, Tett SFB, Crowley TJ (2011) Influence of human and natural forcing on European seasonal temperatures. Nat Geosci. doi: 10.1038/NGEO1057 Google Scholar
  31. Hibler WD (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9:815–846CrossRefGoogle Scholar
  32. Hofer D, Raible CC, Stocker TF (2011) Variations of the Atlantic meridional overturning circulation in control and transient simulations of the last millennium. Clim Past 7:133–150CrossRefGoogle Scholar
  33. Ineson S, Scaife AA (2009) The role of the stratosphere in the European climate response to El Niño. Nat Geosci 2:32–36. doi: 10.1038/ngeo381 CrossRefGoogle Scholar
  34. IPCC Climate Change 2007 (2007) The physical science basis. In: Contribution of Working Group I 10 to the 4th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1269, 1271, 1289, 1300Google Scholar
  35. Jones GS, Gregory JM, Stott PA, Tett SFB, Thorpe RB (2005) An AOGCM simulation of the climate response to a volcanic super-eruption. Clim Dyn 25:725–738CrossRefGoogle Scholar
  36. Jungclaus JH, Koenigk T (2010) Low-frequency variability of the arctic climate: the role of oceanic and atmospheric heat transport variations. Clim Dyn 34:265–279. doi: 10.1007/s00382-009-0569-9 CrossRefGoogle Scholar
  37. Jungclaus JH, Haak H, Latif M, Mikolajewicz U (2005) Arctic–North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18:4013–4031CrossRefGoogle Scholar
  38. Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo JJ, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19:3952–3972CrossRefGoogle Scholar
  39. Jungclaus JH et al (2010) Climate and carbon-cycle variability over the last millennium. Clim Past 6:723–737. doi: 10.5194/cp-6-723-2010 CrossRefGoogle Scholar
  40. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470CrossRefGoogle Scholar
  41. Kao HY, Yu JY (2009) Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J Clim 22:615–632. doi: 10.1175/2008JCLI2309.1 CrossRefGoogle Scholar
  42. Kodera K (1994) Influence of volcanic eruptions on the troposphere through stratospheric dynamical processes in the Northern Hemisphere winter. J Geophys Res 99:1273–1282CrossRefGoogle Scholar
  43. Koenigk T, Mikolajewicz U, Haak H, Jungclaus JH (2006) Variability of Fram Strait sea ice export: causes, impacts and feedbacks in a coupled climate model. Clim Dyn 26:17–34. doi: 10.1007/s00382-005-0060-1 CrossRefGoogle Scholar
  44. Kvamstø NG, Skeie P, Stephenson DB (2004) Impact of Labrador sea-ice extent on the North Atlantic oscillation. Int J Climatol 24(5):603–612CrossRefGoogle Scholar
  45. Labitzke K (1994) Stratospheric temperature changes after the Pinatubo eruption. J Atmos Terr Phys 59:1027–1034CrossRefGoogle Scholar
  46. Lazier JRN, Hendry R, Clarke A, Yashayaev I, Rhines P (2002) Convection and restratification in the Labrador Sea, 1990–2000. Deep Sea Res I 49(10):1819–1835CrossRefGoogle Scholar
  47. Lohmann K, Drange H, Bentsen M (2009) Response of the North Atlantic subpolar gyre to persistent North Atlantic oscillation like forcing. Clim Dyn 32:273–285CrossRefGoogle Scholar
  48. Mantua NJ, Hare SR (2002) The Pacific Decadal Oscillation. J Oceanogr 58:35–44CrossRefGoogle Scholar
  49. Marshall J, Johnson H, Goodman J (2001) A study of the interaction of the North Atlantic Oscillation with the ocean circulation. J Clim 14:1399–1421CrossRefGoogle Scholar
  50. Marsland SJ, Haak H, Jungclaus JH, Latif M, Roeske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5:91–127CrossRefGoogle Scholar
  51. McGregor S, Timmermann A (2011) The effect of explosive tropical volcanism on ENSO. J Clim (in press)Google Scholar
  52. Müller WA, Roeckener E (2008) ENSO teleconnections in projections of future climate in ECHAM5/MPI-OM. Clim Dyn 31:533–549. doi: 10.1007/s00382-007-0357-3 CrossRefGoogle Scholar
  53. Okumura Y, Shang-Png X, Atusi N, Youichi T (2001) Tropical Atlantic air-sea interaction and its influence on the NAO. Geophys Res Lett 28(8):1507–1510CrossRefGoogle Scholar
  54. Otterå OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci. doi: 10.1038/NGEO995 Google Scholar
  55. Palastanga V, van der Schrier G, Weber S, Kleinen T, Briffa KR, Osborn TJ (2011) Atmosphere and ocean dynamics: contributors to the European Little Ice Age? Clim Dyn 36:973–987. doi: 10.1007/s00382-010-0751-0 CrossRefGoogle Scholar
  56. Perlwitz J, Harnik N (2003) Observational evidence of a stratospheric influence on the troposphere by planetary wave reflection. J Clim 16:3011–3026CrossRefGoogle Scholar
  57. Pinto JG, Reyers M, Ulbrich U (2010) The variable link between PNA and NAO in observations and in multi-century CGCM simulations. Clim Dyn. doi: 10.1007/s00382-010-0770-x Google Scholar
  58. Raddatz TJ, Reick CH, Knorr W, Kattge J, Roeckner E, Schnur R, Schnitzler KG, Wetzel P, Jungclaus JH (2007) Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century? Clim Dyn 29:565–574CrossRefGoogle Scholar
  59. Raible CC, Luksch U, Fraedrich K, Voss R (2001) North Atlantic decadal regimes in a coupled GCM simulation. Clim Dyn 18:321–330CrossRefGoogle Scholar
  60. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219CrossRefGoogle Scholar
  61. Robock A, Mao J (1992) Winter warming from large volcanic eruptions. Geophys Res Lett 19:2405–2408CrossRefGoogle Scholar
  62. Roeckner E et al (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19:3771–3791CrossRefGoogle Scholar
  63. Sarafanov A (2009) On the effect of the North Atlantic Oscillation on temperature and salinity of the subpolar North Atlantic intermediate and deep waters. ICES J Mar Sci 66:1448–1454CrossRefGoogle Scholar
  64. Scaife AA, Knight JR, Vallis GK, Folland CK (2005) A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys Res Lett 32:L18715. doi: 10.1029/2005GL023226 CrossRefGoogle Scholar
  65. Shindell DT, Schmidt GA, Miller RL, Mann ME (2003) Volcanic and solar forcing of climate change during the preindustrial era. J Clim 16:4094–4107CrossRefGoogle Scholar
  66. Shindell DT, Schmidt GA, Mann M, Faluvegi G (2004) Dynamic winter climate response to large tropical volcanic eruptions since 1600. J Geophys Res 109:D05104. doi: 10.1029/2003JD004151 CrossRefGoogle Scholar
  67. Shiogama H et al (2010) Possible influence of volcanic activity on the decadal potential predictability of the natural variability in near-term climate predictions. Adv Meteorol 657318. doi: 10.1155/2010/657318
  68. Soden BJ, Wetherald RT, Stenchikov GL, Robock A (2002) Global cooling after the eruption of Mount Pinatubo: a test of climate feedback by water vapor. Science 296(5568):727–730. doi: 10.1126/science.296.5568.727 CrossRefGoogle Scholar
  69. Spangehl T, Cubasch U, Raible CC, Schimanke S, Körper J, Hofer D (2010) Transient climate simulations from the Maunder Minimum to present day: role of the stratosphere. J Geophys Res 115:D00I10. doi: 10.1029/2009JD012358 CrossRefGoogle Scholar
  70. Steel RGD, Torrie JH (1960) Principles and procedures of statistics. McGraw-Hill, New YorkGoogle Scholar
  71. Stenchikov G, Robock A, Ramaswamy V, Schwarzkopf MD, Hamilton K, Ramachandran S (2002) Arctic Oscillation response to the 1991 Mount Pinatubo eruption: effects of volcanic aerosols and ozone depletion. J Geophys Res 107(D24):4803. doi: 10.1029/2002JD002090 CrossRefGoogle Scholar
  72. Stenchikov G, Hamilton K, Stouffer RJ, Robock A, Ramaswamy V, Santer B, Graf HF (2006) Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. J Geophys Res 111:D07107. doi: 10.1029/2005JD006286 CrossRefGoogle Scholar
  73. Stenchikov G, Delworth TL, Ramaswamy V, Stouffer RJ, Wittenberg A, Zeng F (2009) Volcanic signals in oceans. J Geophys Res 114:D16104. doi: 10.1029/2008JD011673 CrossRefGoogle Scholar
  74. Swingedouw D, Terray L, Cassou C, Voldoire A, Salas-Mélia D, Servonnat J (2010) Natural forcing of climate during the last millennium: fingerprint of solar variability. Clim Dyn. doi: 10.1007/s00382-010-0803-5 Google Scholar
  75. Taguchi M, Hartmann DL (2006) Increased Occurrence of Stratospheric Sudden Warmings during El Niño as Simulated by WACCM. J Clim 19(3):324–332CrossRefGoogle Scholar
  76. Thomas MA, Timmreck C, Giorgetta M, Graf HF, Stenchikov G (2009a) Simulation of the climate impact of Mt. Pinatubo eruption using ECHAM5. Part-I: sensitivity to the modes of atmospheric circulation and boundary conditions. Atmos Chem Phys 9:757–769CrossRefGoogle Scholar
  77. Thomas MA, Giorgetta M, Timmreck C, Graf HF, Stenchikov G (2009b) Simulation of the climate impact of Mt. Pinatubo eruption using ECHAM5. Part-II: sensitivity to the phase of the QBO. Atmos Chem Phys 9:3001–3009CrossRefGoogle Scholar
  78. Timmreck C et al (2009) Limited temperature response to the very large AD 1258 volcanic eruption. Geophys Res Lett 36:L21708. doi: 10.1029/2009GL040083 CrossRefGoogle Scholar
  79. Timmreck C et al (2010) Aerosol size confines climate response to volcanic super-eruptions. Geophys Res Lett. doi: 10.1029/2010GL045464 Google Scholar
  80. Toohey M, Niemeier U, Kutterolf S, Timmreck C, Krueger K (2010) On the hemispheric asymmetry of sulphate aerosol loading and deposition after major tropical volcanic eruptions. In: AGU Fall Meeting 2010, V13C-2372Google Scholar
  81. Trenberth KE, Dai A (2007) Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys Res Lett 34:L15702. doi: 10.1029/2007GL030524 CrossRefGoogle Scholar
  82. Trouet V, Esper J, Graham NE, Baker A, Scourse JD, Frank DC (2009) Persistent positive North Atlantic Oscillation mode dominated the medieval climate anomaly. Science 324:78–80. doi: 10.1126/science.1166349 CrossRefGoogle Scholar
  83. Wagner S, Zorita E (2005) The influence of volcanic, solar and CO2 forcing on the temperatures in the Dalton Minimum (1790–1830). Clim Dyn 25:205–218CrossRefGoogle Scholar
  84. Walter K, Graf HF (2006) Life cycles of North Atlantic teleconnections under strong and weak polar vortex conditions. Q J R Meteorol Soc 132:467–483. doi: 10.1256/qj.05.25 CrossRefGoogle Scholar
  85. Wetzel P, Winguth A, Maier-Reimer E (2005) Sea-to-air CO2 fluxes from 1948 to 2003. Glob Biogeochem Cycles 19:GB2005. doi: 10.1029/2004GB002339 CrossRefGoogle Scholar
  86. Wu P, Gordon C (2002) Oceanic influence on North Atlantic climate variability. J Clim 15:1911–1925CrossRefGoogle Scholar
  87. Yoshimori M, Raible CC, Stocker TF, Renold M (2010) Simulated decadal oscillations of the Atlantic meridional overturning circulation in a cold climate state. Clim Dyn 34:101–121. doi: 10.1007/s00382-009-0540-9 CrossRefGoogle Scholar
  88. Zanchettin D, Rubino A, Jungclaus JH (2010a) Intermittent multidecadal-to-centennial fluctuations dominate global temperature evolution over the last millennium. Geophys Res Lett 37:L14702. doi: 10.1029/2010GL043717 CrossRefGoogle Scholar
  89. Zanchettin D, Rubino A, Lorenz SJ, Timmreck C, Jungclaus JH (2010b) Implications of El Niño-Southern Oscillation on volcanic impacts on Northern Hemisphere winter climates during the Last Millennium. Geophys Res Abstr 12, EGU2010-11749Google Scholar
  90. Zhang J, Steele M, Rothrock DA, Lindsay RW (2004) Increasing exchanges at Greenland-Scotland Ridge and their links with the North Atlantic Oscillation and Arctic Sea Ice. Geophys Res Lett 31:L09307. doi: 10.1029/2003GL019304 CrossRefGoogle Scholar
  91. Zhong Y et al (2010) Centennial-scale climate change from decadally-paced explosive volcanism: a coupled sea ice-ocean mechanism. Clim Dyn 23:5–7. doi: 10.1007/s00382-010-0967-z Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • D. Zanchettin
    • 1
    Email author
  • C. Timmreck
    • 2
  • H.-F. Graf
    • 3
  • A. Rubino
    • 4
  • S. Lorenz
    • 1
  • K. Lohmann
    • 1
  • K. Krüger
    • 5
  • J. H. Jungclaus
    • 1
  1. 1.Ocean in the Earth System DepartmentMax Planck Institute for MeteorologyHamburgGermany
  2. 2.Atmosphere in the Earth System DepartmentMax Planck Institute for MeteorologyHamburgGermany
  3. 3.Centre for Atmospheric ScienceUniversity of CambridgeCambridgeUK
  4. 4.Department of Environmental SciencesCa’ Foscari UniversityVeniceItaly
  5. 5.IFM-GEOMARLeibniz-Institute of Marine SciencesKielGermany

Personalised recommendations