Climate Dynamics

, Volume 39, Issue 6, pp 1413–1430 | Cite as

Reduction of the thermocline feedback associated with mean SST bias in ENSO simulation

  • Baoqiang Xiang
  • Bin Wang
  • Qinghua Ding
  • Fei–Fei Jin
  • Xiouhua Fu
  • Hyung-Jin Kim
Article

Abstract

Associated with the double Inter-tropical convergence zone problem, a dipole SST bias pattern (cold in the equatorial central Pacific and warm in the southeast tropical Pacific) remains a common problem inherent in many contemporary coupled models. Based on a newly-developed coupled model, we performed a control run and two sensitivity runs, one is a coupled run with annual mean SST correction and the other is an ocean forced run. By comparison of these three runs, we demonstrated that a serious consequence of this SST bias is to severely suppress the thermocline feedback in a realistic simulation of the El Niño/Southern Oscillation. Firstly, the excessive cold tongue extension pushes the anomalous convection far westward from the equatorial central Pacific, prominently diminishing the convection-low level wind feedback and thus the air-sea coupling strength. Secondly, the equatorial surface wind anomaly exhibits a relatively uniform meridional structure with weak gradient, contributing to a weakened wind-thermocline feedback. Thirdly, the equatorial cold SST bias induces a weakened upper-ocean stratification and thus yields the underestimation of the thermocline-subsurface temperature feedback. Finally, the dipole SST bias underestimates the mean upwelling through (a) undermining equatorial mean easterly wind stress, and (b) enhancing convective mixing and thus reducing the upper ocean stratification, which weakens vertical shear of meridional currents and near-surface Ekman-divergence.

Keywords

ENSO SST bias Thermocline feedback Air-sea coupling 

References

  1. AchutaRao K, Sperber K (2002) Simulation of the El Niño Southern Oscillation: results from the coupled model intercomparison project. Clim Dyn 19:191–209CrossRefGoogle Scholar
  2. AchutaRao K, Sperber K (2006) ENSO simulation in coupled ocean-atmosphere models: are the current models better? Clim Dyn 27:1–16CrossRefGoogle Scholar
  3. Adler RF et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeor 4:1147–1167CrossRefGoogle Scholar
  4. An S-I (2008) Interannual variations of the tropical ocean instability wave and ENSO. J Clim 21:3680–3686Google Scholar
  5. An S-I, Jin F–F (2001) Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J Clim 14:3421–3432CrossRefGoogle Scholar
  6. An S-I, Ham Y-G, Kug J-S, Timmermann A, Choi J, Kang I-S (2010) The inverse effect of annual-mean state and annual-cycle changes on ENSO. J Clim 23:1095–1110CrossRefGoogle Scholar
  7. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Wea Rev 97:163–172CrossRefGoogle Scholar
  8. Carton JA, Giese BS, Grodsky SA (2005) Sea level rise and the warming of the oceans in the SODA ocean reanalysis. J Geophys Res 110. doi:10.1029/2004JC002817
  9. Cronin MF, Kessler WS (2009) Near-Surface shear flow in the tropical Pacific cold tongue front. J Phys Oceanogr 39:1200–1215CrossRefGoogle Scholar
  10. Danabasoglu G, Large WG, Tribbia JJ, Gent PR, Briegleb BP (2006) Diurnal coupling in the tropical oceans of CCSM3. J Clim 19:2347–2365CrossRefGoogle Scholar
  11. Dukowicz JK, Smith RD (1994) Implicit free-surface method for the bryan-cox-semtner ocean model. J Geophys Res 99:7991–8014CrossRefGoogle Scholar
  12. Fedorov AV, Philander SGH (2000) Is El Niño changing? Science 288:1997–2002CrossRefGoogle Scholar
  13. Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155CrossRefGoogle Scholar
  14. Guilyardi E (2006) El Niño-mean state-seasonal cycle intearactions in a multi-model ensemble. Clim Dyn 26:329–348CrossRefGoogle Scholar
  15. Guilyardi E, Braconnot P, Jin F–F, Kim ST, Kolasinski M, Li T, Musat I (2009a) Atmosphere feedbacks during ENSO in a coupled GCM with a modified atmospheric convection scheme. J Clim 22:5698–5718CrossRefGoogle Scholar
  16. Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, Oldenborgh GJV, Stockdale T (2009b) Understanding El Niño in ocean-atmosphere general circulation models. Bull Am Meteor Soc 90:325–340CrossRefGoogle Scholar
  17. Guldberg A, Kaas E, Deque M, Yang S, Vester TS (2005) Reduction of systematic errors by empirical model correction impact on seasonal prediction skill. Tellus 57A:575–588Google Scholar
  18. Jiang X, Li T (2005) Re-initiation of the boreal summer intraseasonal oscillation in the tropical Indian Ocean. J Clim 18:3777–3795CrossRefGoogle Scholar
  19. Jin F–F, Kim ST, Bejarano L (2006) A coupled stability index for ENSO. Geophys Res Lett 33:L23708. doi:101029/2006GL027221
  20. Jin F–F, Lin L, Timmermann A, Zhao J (2007) Ensemble-mean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing. Geophys Res Lett 34:L03807. doi:10.1029/2006GL027372 CrossRefGoogle Scholar
  21. Johnson GC, McPhaden MJ, Firing E (2001) Equatorial Pacific Ocean horizontal velocity, divergence, and upwelling. J Phys Oceanogr 31:839–849CrossRefGoogle Scholar
  22. Joseph R, Nigam S (2006) ENSO evolution and teleconnections in IPCC’s twentieth-century climate simulations Realistic representation? J Clim 19:4360–4377CrossRefGoogle Scholar
  23. Kim ST, Jin F–F (2010) An ENSO stability analysis Part II: results from the twentieth and twenty-first century simulations of the CMIP3 models. Clim Dyn. doi:101007/s00382-010-0872-5
  24. Kim D, Kug J-S, Kang I-S, Jin F–F, Wittenberg AT (2008) Tropical Pacific impacts of convective momentum transport in the SNU coupled GCM. Clim Dyn 31:213–226CrossRefGoogle Scholar
  25. Lagerloef GSE, Mitchum GT, Lukas RB, Niller PP (1999) Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data. J Geophys Res 104(C10):23313–23326CrossRefGoogle Scholar
  26. Large WG, Danabasoglu G (2006) Attribution and impacts of upper-ocean biases in CCSM3. J Clim 19:2325–2346CrossRefGoogle Scholar
  27. Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–403CrossRefGoogle Scholar
  28. Large WG, Danabasoglu G, Doney SC, McWilliams JC (1997) Sensitivity to surface forcing and boundary layer mixing in a global ocean model annual-mean climatology. J Phys Oceanogr 27:2418–2447CrossRefGoogle Scholar
  29. Latif M, Keenlyside NS (2009) El Niño/Southern Oscillation response to global warming. PNAS 106:20578–20583CrossRefGoogle Scholar
  30. Latif M et al (2001) ENSIP: the El Niño simulation intercomparision project. Clim Dyn 18:255–276CrossRefGoogle Scholar
  31. Li T, Hogan TF (1999) The role of annual-mean climate on seasonal and interannual variability of the tropical Pacific in a coupled GCM. J Clim 12:780–792CrossRefGoogle Scholar
  32. Lin J-L (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs Ocean-Atmosphere feedback analysis. J Clim 20:4497–4525CrossRefGoogle Scholar
  33. Lioyd J, Guilyardi E, Weller H (2010) The role of atmosphere feedbacks during ENSO in the CMIP3 models part II using AMIP runs to understand the heat flux feedback mechanisms. Clim Dyn. doi:101007/s00382-010-0895-y:
  34. Liu L, Yu W, Li T (2011) Dynamic and thermodynamic air-sea coupling associated with the Indain Ocean dipole diagnosed from 23 WCRP CMIP3 models. J Clim. doi:10.1175/2011JCLI4041.1
  35. Luo J–J, Masson S, Roeckner E, Madec G, Yamagata T (2005) Reducing climatology bias in an ocean-atmosphere CGCM with improved coupling physics. J Clim 18:2344–2360CrossRefGoogle Scholar
  36. Ma C–C, Mechoso CR, Robertson AW, Arakawa A (1996) Peruvian stratus clouds and tropical Pacific circulation a coupled ocean-atmosphere GCM study. J Clim 9:1635–1645CrossRefGoogle Scholar
  37. Manganello JV, Huang B (2009) The influence of systematic errors in the Southeast Pacific on ENSO variability and prediction in a coupled GCM. Clim Dyn. doi:101007/s00382-008-0407-5
  38. Mechoso CR et al (1995) The seasonal cycle over the tropical Pacific in coupled ocean-atmosphere general circulation models. Mon Wea Rev 123:2825–2835CrossRefGoogle Scholar
  39. Meehl GA, Gent PR, Arblaster JM, Otto-Bliesner BL, Brady EC, Craig A (2001) Factors that affect the amplitude of El Niño in global coupled climate models. Clim Dyn 17:515–526CrossRefGoogle Scholar
  40. Meehl GA, Covey C, McAvaney B, Latif M, Stouffer RJ (2005) Overview of the coupled model intercomparison project. Bull Am Meteor Soc 86:89–93CrossRefGoogle Scholar
  41. Meinen CS, McPhaden MJ, Johnson GC (2001) Vertical velocities and transports in the Equatorial Pacific during 1993–99. J Phys Oceanogr 31:3230–3248CrossRefGoogle Scholar
  42. Merryfield WJ (2006) Changes to ENSO under CO2 doubling in a multimodel ensemble. J Clim 19:4009–4027CrossRefGoogle Scholar
  43. Neale RB, Richter JH, Jochum M (2008) The impact of convection on ENSO: from a delayed oscillator to a series of events. J Clim 21:5904–5924CrossRefGoogle Scholar
  44. Nordeng TE (1995) Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics ECMWF Research Dept Tech Memo, 206, European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom, 41 ppGoogle Scholar
  45. Ohlmann JC (2003) Ocean radiant heating in climate models. J Clim 16:1337–1351CrossRefGoogle Scholar
  46. Philip SY, Van Oldenborgh GJ (2006) Shifts in ENSO coupling processes under global warming. Geophys Res Lett 33:L11704. doi:10.1029/2006GL026196 CrossRefGoogle Scholar
  47. Randall DA, et al. (2007) Climate models and their evaluation. In: Solomon S et al. (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 589–662Google Scholar
  48. Roeckner E et al. (1996) The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. Max-Planck-Institute for Meteorology Rep 218, 90 ppGoogle Scholar
  49. Smith RD, Dukowicz JK, Malone RC (1992) Parallel ocean general circulation modeling. Physica D 60:38–61CrossRefGoogle Scholar
  50. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2293CrossRefGoogle Scholar
  51. Song X, Zhang GJ (2009) Convection parameterization, Tropical Pacific double ITCZ, and upper-ocean biases in the NCAR CCSM3. Part I: climatology and atmospheric feedback. J Clim 22:4299–4315CrossRefGoogle Scholar
  52. Spencer H, Sutton R, Slingo JM (2007) El Niño in a coupled climate model sensitivity to changes in mean state induced by heat flux and wind stress corrections. J Clim 15:2273–2298CrossRefGoogle Scholar
  53. Taylor KE, Williamson D, Zwiers F (2000) The sea surface temperature and sea-ice concentration boundary condition for AMIP II simulations, PCMDI Rep 60, Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, CA, 25 ppGoogle Scholar
  54. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Wea Rev 117:1779–1800CrossRefGoogle Scholar
  55. Uppala SM et al (2005) The ERA-40 Re-analysis. Quart J Roy Meteor Soc 131:2961–3012CrossRefGoogle Scholar
  56. Valcke S, Caubel A, Declat D, Terry L (2003) OASIS3 ocean atmosphere sea ice soil user’s guide tech rep TR/CMGC/03/69, CERFACS, Toulouse, France, 57 ppGoogle Scholar
  57. Vitart F, Balmaseda MA, Ferranti L, Anderson D (2003) Westerly wind events and the 1997/98 El Niño event in the ECMWF seasonal forecasting system: a case study. J Clim 16:3153–3170CrossRefGoogle Scholar
  58. Wang B, An S-I (2001) Why the properties of El Niño changed during the late 1970s. Geophys Res Lett 28:3709–3712CrossRefGoogle Scholar
  59. Wittenberg AT, Rosati A, Lau N-C, Ploshay JJ (2006) GFDL’s CM2 global coupled climate models part III tropical pacific climate and ENSO. J Clim 19:698–722CrossRefGoogle Scholar
  60. Xiang B, Yu W, Li T, Wang B (2011) The critical role of the boreal summer mean state in the development of the IOD. Geophys Res Lett 38:L02710. doi:10.1029/2010GL045851 CrossRefGoogle Scholar
  61. Yeager SG, Shields CA, Large WG, Hack JJ (2006) The low-resolution CCSM3. J Clim 19:2545–2566CrossRefGoogle Scholar
  62. Yu L, Weller RA (2007) Objectively analyzed air-sea heat fluxes for the global oce-free oceans (1981–2005). Bull Am Meteor Soc 88:527–539CrossRefGoogle Scholar
  63. Zavala-Garay J, Moore AM, Perez CL, Kleeman R (2003) The response of a coupled model of ENSO to observed estimates of stochastic forcing. J Clim 16:2827–2842Google Scholar
  64. Zhang Y, Rossow WB, Lacis AA, Oinas V, Mishchenko MI (2004) Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinements of the radiative transfer model and the input data. J Geophys Res 109:D19105. doi:101029/2003JD004457 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Baoqiang Xiang
    • 1
  • Bin Wang
    • 1
    • 2
  • Qinghua Ding
    • 3
  • Fei–Fei Jin
    • 1
  • Xiouhua Fu
    • 2
  • Hyung-Jin Kim
    • 4
  1. 1.Department of MeteorologySchool of Ocean and Earth Science and Technology, University of Hawaii at ManoaHonoluluUSA
  2. 2.International Pacific Research Center, University of Hawaii at ManoaHonoluluUSA
  3. 3.Department of Earth and Space SciencesQuaternary Research Center, University of WashingtonSeattleUSA
  4. 4.Research Institute for Global Change, Japan Agency for Marine-Earth Science and TechnologyKanagawaJapan

Personalised recommendations