Climate Dynamics

, Volume 38, Issue 5–6, pp 1115–1128 | Cite as

A multivariate analysis of Antarctic sea ice since 1979

  • Newton de Magalhães NetoEmail author
  • Heitor Evangelista
  • Kenny Tanizaki-Fonseca
  • Margareth Simões Penello Meirelles
  • Carlos Eiras Garcia


Recent satellite observations have shown an increase in the total extent of Antarctic sea ice, during periods when the atmosphere and oceans tend to be warmer surrounding a significant part of the continent. Despite an increase in total sea ice, regional analyses depict negative trends in the Bellingshausen-Amundsen Sea and positive trends in the Ross Sea. Although several climate parameters are believed to drive the formation of Antarctic sea ice and the local atmosphere, a descriptive mechanism that could trigger such differences in trends are still unknown. In this study we employed a multivariate analysis in order to identify the response of the Antarctic sea ice with respect to commonly utilized climate forcings/parameters, as follows: (1) The global air surface temperature, (2) The global sea surface temperature, (3) The atmospheric CO2 concentration, (4) The South Annular Mode, (5) The Niño 3, (6) The Niño 3 + 4, 7) The Niño 4, (8) The Southern Oscillation Index, (9) The Multivariate ENSO Index, (10) the Total Solar Irradiance, (11) The maximum O3 depletion area, and (12) The minimum O3 concentration over Antarctica. Our results indicate that western Antarctic sea ice is simultaneously impacted by several parameters; and that the minimum, mean, and maximum sea ice extent may respond to a separate set of climatic/geochemical parameters.


Antarctica Sea ice Climate change Ocean–atmosphere interactions 



We thank CNPq (the Brazilian National Council for the Scientific and Technological Development) for funding this work (project: 556971/2009-4 and 573720/2008-8), and FAPERJ for scholoarship support.


  1. Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet DM, Pielke RA, Pierrehumbert RT, Rhines PB, Stocker TF, Talley LD, Wallace JM (2003) Abrupt climate change. Science 299:2005–2010CrossRefGoogle Scholar
  2. Bitz CM, Gent PR, Woodgate RA, Holland MM, Lindsay R (2006) The influence of sea ice on ocean heat uptake in response to increasing CO2. J Clim 19:2437–2450CrossRefGoogle Scholar
  3. Broecker WS (1997) Thermohaline circulation, the Achilles heel of our climate system: will man-made CO2 upset the current balance? Science 278:1582–1588Google Scholar
  4. Cavalieri DJ, Parkinson CL (2008) Antarctic sea ice variability and trends, 1979–2006. J Geophys Res 113:C07004. doi: 10.1029/2007JC004564
  5. Cavalieri DJ, Parkinson CL, Vinnikov KY (2003) 30-year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability. Geophys Res Lett 30. doi: 10.1029/2003GL018031
  6. Chapman WL, Walsh JE (2007) A synthesis of antarctic temperatures. J Clim 20:4096–4117CrossRefGoogle Scholar
  7. Cubasch U, Voss R, Hegerl GC, Waszkewitz J, Croeley TJ (1997) Simulation of the influence of solar radiation variations on the global climate with an ocean-atmosphere general circulation model. Clim Dyn 13:757–767CrossRefGoogle Scholar
  8. Digby PGN, Kempton RA (1987) Multivariate analysis of ecological communities, 1st edn. Chapman & Hall, London, pp 80–86CrossRefGoogle Scholar
  9. Fahrbach E, Rohardt G, Scheele N, Schriider M, Strass V, Wisotzki A (1995) Formation and discharge of deep and bottom water in the northwestern Weddell Sea. J Mar Res 53:515–530Google Scholar
  10. Fligge M, Solanki SK, Pap JM, Frohlich C, Wehrli Ch (2001) Variations of solar spectral irradiance from near UV to the infrared–measurements and results. J Atmos Solar Terr Phys 63:1479–1487CrossRefGoogle Scholar
  11. Fogt RL, Bromwich DH (2006) Decadal variability of the ENSO teleconnection to the high latitude South Pacific governed by coupling with the southern annular mode. J Clim 19:979–997CrossRefGoogle Scholar
  12. Frohlich C (2002) Total solar irradiance variations since 1978. Adv Space Res 10:1409–1416CrossRefGoogle Scholar
  13. Gill AE (1973) Circulation and bottom water formation in the Weddell Sea. Deep-Sea Res 20:111–140Google Scholar
  14. Gille ST (2002) Warming of the southern ocean since the 1950 s. Science 295:1275–1277CrossRefGoogle Scholar
  15. Gillet NP, Thompson DW (2003) Simulation of recent southern hemisphere climate change. Science 302:273–275Google Scholar
  16. Hair JF Jr, Anderson RE, Tatham RI, Black WC (1998) Multivariate data analysis, 5th edn. Upper Saddle River, Prentice HallGoogle Scholar
  17. Hall A, Visbeck M (2002) Synchronous variability in the southern hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J Clim 15:3043–3057CrossRefGoogle Scholar
  18. Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci USA 103:14288–14293. doi: 10.1073/pnas.0606291103 Google Scholar
  19. Hoyt DV, Schatten KH (1997) The role of the sun in climate change. Oxford University Press, OxfordGoogle Scholar
  20. Jacobs SS, Giulivi CF, Mele PA (2002) Freshening of the ross sea during the late 20th century. Science 297:386–389CrossRefGoogle Scholar
  21. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77:437–471Google Scholar
  22. Kristjánsson JE, Kristiansen J, Kaas E (2003) Solar activity, cosmic rays, clounds and climate–an update. Adv Space Res 32:407–415CrossRefGoogle Scholar
  23. Kwok R, Comiso JC (2002) Spatial patterns of variability in Antarctic surface temperature: connections to the southern hemisphere annular mode and the southern oscillation. Geophys Res Lett 29:1705. doi: 10.1029/2002GL015415 Google Scholar
  24. Lannuzel D, Schoemann V, de Jong J, Tison J-L, Chou L (2007) Distribution and 22 biogeochemical behaviour of iron in East Antarctic sea ice. Mar Chem 106(1–2):18–32CrossRefGoogle Scholar
  25. Lean J (1991) Variations in the Sun’s radiative output. Rev Geophys 29:505–535CrossRefGoogle Scholar
  26. Lean J, Beer J, Bradley J (1995) Reconstruction of solar irradiance since 1610: implications for climate change. Geophys Res Lett 22:3195–3198CrossRefGoogle Scholar
  27. Levitus S, Antonov J, Boyer T (2005) Warming of the world ocean, 1955–2003. Geophys Res Lett 32:L02604. doi: 10.1029/2004GL021592
  28. Liu J, Curry JA (2010) Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice. PNAS 107(34): 14987–14992Google Scholar
  29. Liu J, Yuan X, Rind D, Martinson DG (2002) Mechanism study of the ENSO and southern high latitude climate teleconections. Geophys Res Lett 29. doi: 1029/2002GL015143
  30. Liu J, Curry JA, Martinson DG (2004) Interpretation of recent Antarctic sea ice variability. Geophys Res Lett 31: L02205. doi: 10.1029/2003GL018732
  31. Loeb V, Siegel V, Holm-Hansen O, Hewit RT, Fraserk W, Trivelpiecek W, Trivelpiecek S (1997) Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387:897–900CrossRefGoogle Scholar
  32. McConnell JR, Aristarain AJ, Banta JR, Edwards PR, Simões JC (2007) 20th-Century doubling in dust archived in an Antarctic Peninsula ice core parallels climate change and desertification in South America. Proc Natl Acad Sci USA 104(14):5743–5748Google Scholar
  33. Meehl GA, Washington WM, Wigley TML, Arblaster JM, Dai A (2002) Solar and greenhouse gas forcing and climate response in the twentieth century. J Clim 16:426–444CrossRefGoogle Scholar
  34. Randel WJ, Cobb JB (1994) Coherent variations of monthly mean total ozone and lower stratospheric temperature. J Geophys Res 99:5433–5447CrossRefGoogle Scholar
  35. Rodolfo Rigozo N, Roger Nordemann DJ, Evangelista da Silva H, Pereira de Souza Echer M, Echer E (2007) Solar and climate signal records in tree ring width from chile (AD 1587–1994). Planet Space Sci 55:158–164CrossRefGoogle Scholar
  36. Smith RC, Martinson DG, Stammerjohn SE (2008) Bellingshausen and Western Antarctic Peninsula region: pigment biomass and sea ice spatial/temporal distribution and interannual variability. Deep Sea Research Part2 55: 1949–1963Google Scholar
  37. Solanki SK, Krivova NA (2003) Can solar variability explain global warming since 1970? J Geophys Res 108(5): 1200. doi: 10.1029/2002JA009753
  38. Solomon S (1998) The mystery of the Antarctic ozone “hole”. Rev Geophys 26:131–148CrossRefGoogle Scholar
  39. Solomon S (1999) Stratospheric ozone depletion: a review of concept and history. Rev Geophys 37:275–316CrossRefGoogle Scholar
  40. Son WS, Tandon NF, Polvani LN, Waugh DW (2009) Ozone hole and southern hemisphere climate change. Geophys Res Lett 36:L15705. doi: 10.1029/2009GL038671
  41. Stammerjohn SE, Martinson DG, Smith RC, Iannuzzi RA (2008) Sea ice in the western Antarctic Peninsula region: spatio-temporal variability from ecological and climate change perspectives. Deep Sea Res Part2 55:2041–2058Google Scholar
  42. Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D (2008) Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular Mode variability. J Geophys Res 113:c03s90. doi: 10.1029/2007jc004269
  43. Steig EJ, Schneider DP, Rutherford SD, Mann ME, Comiso JC, Shindell DT (2009) Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 457. doi: 10.1038/nature07669
  44. Stolarsk RS, Krueger AJ, Schoeber MR, McPeters RLD, Newman PA, Alpert JC (1986) Nimbus7 satellite measurements of the spring time Antarctic ozone decrease. Nature 322:808–811Google Scholar
  45. Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part 1: month-to-month variability. J Clim 13:1000–1016CrossRefGoogle Scholar
  46. Troshichev O, Gabis I (2004) Effects of solar UV irradiation on dynamics of ozone hole in Antarctica. J Atmos Sol Terr Phys 67:93–104CrossRefGoogle Scholar
  47. Tung KK, Camp CD (2008) Solar cycle warming at Earth`s surface in NCEP and ERA-40 data: a linear discriminate analysis. J Geophys Res 113. doi: 10.1029/2007jD009164
  48. Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294CrossRefGoogle Scholar
  49. Turner J, Comiso JC, Marshall GJ, Lachlan-Cope TA, Bracegirdle T, Maksym T, Meredith MP, Wang Z, Orr A (2009) Non annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys Res Lett 36:L08502. doi: 10.1029/2009GL037524
  50. Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change 60:243–274Google Scholar
  51. Venegas SA (2003) The Antarctic circumpolar wave: a combination of two signals. J Clim 16(15):2509–2525Google Scholar
  52. Vonmoos M, Beer J, Muscheler R (2006) Large variations in Holocene solar activity: constraints from 10Be in the Greenland Ice Core Project ice core. J Geophys Res 111:A10105. doi: 10.1029/2005JA011500
  53. White WB, Peterson R (1996) An Antarctic circumpolar wave in surface pressure, wind, temperature, and sea ice extent. Nature 380:699–702CrossRefGoogle Scholar
  54. Yuan X (2004) ENSO-related impacts on Antarctic sea ice: a synthesis of phenomenon and mechanisms. Antarct Sci 16(4):415–425CrossRefGoogle Scholar
  55. Yuan X, Martinson DG (2000) Antarctic sea ice extent variability and its global connectivity. J Clim 13:1697–1717CrossRefGoogle Scholar
  56. Zhang J (2007) Increasing Antarctic sea ice under warming atmospheric and oceanic conditions. J Clim 20:2515–2529CrossRefGoogle Scholar
  57. Zwally JH, Comiso JC, Parkinson CL, Cavalieri DJ, Gloersen P (2002) Variability of Antarctic sea ice 1979–1998. J Geophys Res 107(C5): 9-1–9-19. doi: 10.1029/2000JC000733

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Newton de Magalhães Neto
    • 1
    Email author
  • Heitor Evangelista
    • 1
  • Kenny Tanizaki-Fonseca
    • 1
    • 2
  • Margareth Simões Penello Meirelles
    • 3
  • Carlos Eiras Garcia
    • 4
  1. 1.LARAMG—Laboratório de Radioecologia e Mudanças GlobaisUniversidade do Estado do Rio de Janeiro (Uerj)Maracanã, Rio de JaneiroBrazil
  2. 2.Depto. Análise Geoambiental, Inst. de GeociênciasUniversidade Federal Fluminense (UFF)NiteróiBrazil
  3. 3.Universidade do Estado do Rio de Janeiro (UERJ)/GeomaticaMaracanã, Rio de JaneiroBrazil
  4. 4.Laboratório de Oceanografia FísicaUniversidade Federal do Rio Grande (FURG)Rio GrandeBrazil

Personalised recommendations