Climate Dynamics

, Volume 39, Issue 1–2, pp 383–398 | Cite as

How well do current climate models simulate two types of El Nino?

  • Yoo-Geun Ham
  • Jong-Seong KugEmail author


In this study, we evaluate the fidelity of current climate models in simulating the two types of El Nino events using the pre-industrial output in CMIP3 archives. It is shown that a few climate models simulate the two types of El Nino events to some extent, while most of the models have serious systematic problems in simulating distinctive patterns of sea-surface temperature (SST) and precipitation anomaly associated with the two types of El Nino; that is, they tend to simulate a single type of El Nino. It is shown that the ability of climate models in simulating the two types of El Nino is related to the sensitivity of the atmospheric responses to the SST anomaly patterns. Models whose convective location is shifted to the east (west) as the SST anomaly center moves to the east (west) tends to simulate the two types of El Nino events successfully. On the other hand, models whose location of convective anomaly is confined over the western or central Pacific tends to simulate only the single type of El Nino event. It is also shown that the confinement of the convective anomaly over the western or central Pacific is closely linked to the dry bias and the associated cold bias over the eastern Pacific. That is, because positive El Nino SST anomalies over the eastern Pacific cannot increase local convection effectively when the total SSTs are still too cold due to a cold bias. This implies that the realistic simulation of climatology, especially over the equatorial eastern Pacific, is essential to the successful simulation of the two types of El Nino.


Two types of El Nino ENSO Climate model 



This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (MEST) (NRF-2009—C1AAA001—2009-0093042).


  1. An SI, Jin FF (2000) Eigen analysis of the interdecadal changes in the structure and frequency of ENSO mode. Geophys Res Lett 272:2573–2576CrossRefGoogle Scholar
  2. An SI, Wang B (2000) Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J Clim 13:2044–2055CrossRefGoogle Scholar
  3. An SI, Ye Z, Hsieh WW (2006) Changes in the leading ENSO modes associated with the late 1970s climate shift: role of surface zonal current. Geophys Res Lett 33:L14609CrossRefGoogle Scholar
  4. An SI, Kug J-S, Ham Y-G, Kang I-S (2008) Successive modulation of ENSO to the future greenhouse warming. J Clim 21:3–21CrossRefGoogle Scholar
  5. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi: 10.1029/2006JC003798 CrossRefGoogle Scholar
  6. Balmaseda MA, Vidard A, Anderson DLT (2008) The ECMWF ORA-S3 ocean analysis system. Mon Weather Rev 136:3018–3034CrossRefGoogle Scholar
  7. Capotondi A, Wittenberg A, Masina S (2006) Spatial and temporal structure of Tropical Pacific interannual variability in 20th century coupled simulations. Ocean Model 15:274–298CrossRefGoogle Scholar
  8. Fedorov AV, Philander SGH (2000) Is El Niño changing? Science 228:1997–2002Google Scholar
  9. Fedorov AV, Philander SG (2001) A stability analysis of tropical ocean-atmosphere interactions: bridging measurements and theory for El Nino. J Clim 141:3086–3101CrossRefGoogle Scholar
  10. Giese BS, Ray S (2011) El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J Geophys Res 116:C02024. doi: 10.1029/2010JC006695
  11. Guilyardi E, Gualdi S, Slingo JM, Navarra A, Delecluse P, Cole J, Madec G, Roberts M, Latif M, Terray L (2004) Representing El Nino in coupled ocean-atmosphere GCMs: the dominant role of the atmospheric component. J Clim 17:4623–4629CrossRefGoogle Scholar
  12. Guilyardi E, Braconnot P, Jin F-F, Kim ST, Kolasinski M, Li T, Musat I (2009) Atmosphere feedbacks during ENSO in a coupled GCM with a modified atmospheric convection scheme. J Clim 22:5698–5718. doi: 10.1175/2009JCLI2815.1 CrossRefGoogle Scholar
  13. Ham Y-G, Kug J-S, Kang I-S, Jin F-F, Timmermann A (2010) Impact of diurnal atmosphere-ocean coupling on tropical climate simulations using a coupled GCM. Clim Dyn 35:331–340. doi: 10.1007/s00382-009-0664-y CrossRefGoogle Scholar
  14. Ham Y-G, Kang I-S, Kim D, Kug J-S (2011) El-Nino Southern Oscillation simulated and predicted in SNU coupled GCMs. Clim Dyn (submitted)Google Scholar
  15. Hendon HH, Lim E, Wang G, Alves O, Hudson D (2009) Prospects for predicting two flavors of El Niño. Geophys Res Lett 36:L19713. doi: 10.1029/2009GL040100 CrossRefGoogle Scholar
  16. Jin FF, An S-I (1999) Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys Res Lett 26:2989–2992CrossRefGoogle Scholar
  17. Kang I-S, Kug J-S (2002) El Nino and La Nina Sea surface temperature anomalies: asymmetry characteristics associated with their wind stress anomalies. J Geophys Res 107(D19):4372CrossRefGoogle Scholar
  18. Kao H-Y, Yu J-Y (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632CrossRefGoogle Scholar
  19. Kim H‐M, Webster PJ, Curry JA (2009) Impact of shifting patterns of Pacific Ocean warming on north Atlantic tropical cyclones. Science 325:77–80. doi: 10.1126/science.1174062 CrossRefGoogle Scholar
  20. Kug J‐S, Jin F‐F, An S‐I (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515. doi: 10.1175/2008JCLI2624.1 CrossRefGoogle Scholar
  21. Kug J-S, Choi J, An S-I, Jin F-F, Wittenberg AT (2010a) Warm pool and cold tongue El Nino events as simulated by the GFDL 2.1 coupled GCM. J Clim 23:1226–1239CrossRefGoogle Scholar
  22. Kug J-S, Ahn M-S, Sung M-K, Yeh S-W, Min H-S, Kim Y-H (2010b) Statistical relationship between two types of El Nino events and climate variation over the Korean Peninsula. Asia-Pacific J Atmos Sci 46:467–474Google Scholar
  23. Kumar KK, Rajagopalan B, Hoerling M, Bates G, Cane M (2006) Unraveling the mystery of Indian monsoon failure during El Niño. Science 314:115–119. doi: 10.1126/science.1131152 CrossRefGoogle Scholar
  24. Larkin NK, Harrison DE (2005a) On the definition of El Niño and associated seasonal average US weather anomalies. Geophys Res Lett 32:L13705. doi: 10.1029/2005GL022738 CrossRefGoogle Scholar
  25. Larkin NK, Harrison DE (2005b) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32:L16705. doi: 10.1029/2005GL022860 CrossRefGoogle Scholar
  26. Lim E-P, Hendon HH, Hudson D, Wang G, Alves O (2009) Dynamical forecast of inter-El Niño variations of tropical SST and Australian Spring Rainfall. Mon Weather Rev 137:3796–3810. doi: 10.1175/2009MWR2904.1 CrossRefGoogle Scholar
  27. Lloyd J, Guilyardi E, Weller H (2009) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part II: using AMIP runs to understand the heat flux feedback mechanisms. Atmos Sci Lett 10:170–176CrossRefGoogle Scholar
  28. Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim G-K, Bloom S, Chen J, Collins D, Conaty A, da Silva A et al (2011) MERRA—NASA’s modern-era retrospective analysis for research and applications. J Clim (submitted)Google Scholar
  29. Schneider EK (2002) Understanding differences between the equatorial Pacific as simulated by two coupled GCMs. J Clim 15:449–469CrossRefGoogle Scholar
  30. Smith TM, Reynolds RW (2004) Improved extended reconstruction of SST (1854–1997). J Clim 18:2466–2477CrossRefGoogle Scholar
  31. Wang G, Hendon HH (2007) Sensitivity of Australian rainfall to inter-El Niño variations. J Clim 20:4211–4226. doi: 10.1175/JCLI4228.1 CrossRefGoogle Scholar
  32. Watanabe M, Chikira M, Imada Y, Kimoto M (2011) Convective control of ENSO simulated in MIROC. J Clim 24:543–562CrossRefGoogle Scholar
  33. Weng H, Ashok K, Behera SK, Rao SA, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific Rim during boreal summer. Clim Dyn 29:113–129. doi: 10.1007/s00382-007-0234-0 CrossRefGoogle Scholar
  34. Wittenberg AT (2002) ENSO response to altered climates. PhD Thesis, Princeton University, p 475Google Scholar
  35. Wittenberg AT, Rosati A, Lau NC, Ploshay JJ (2006) GFDL’s CM2 global coupled climate models. Part III: tropical pacific climate and ENSO. J Clim 19:698–722CrossRefGoogle Scholar
  36. Yeh S‐W, Kug J‐S, Dewitte B, Kwon M‐H, Kirtman BP, Jin F‐F (2009) El Niño in a changing climate. Nature 461:511–514. doi: 10.1038/nature08316 CrossRefGoogle Scholar
  37. Yu J-Y, Kim ST (2010) Identification of Central-Pacific and Eastern-Pacific types of ENSO in CMIP3 models. Geophys Res Lett 37:L15705. doi: 10.1029/2010GL044082 CrossRefGoogle Scholar
  38. Yu J-Y, Kao H-Y, Lee T (2010) Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J Clim 23:2869–2884. doi: 10.1175/2010JCLI3171.1 Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Global Modeling and Assimilation OfficeGSFC/NASAGreenbeltUSA
  2. 2.Goddard Earth Sciences Technology and Research Studies and InvestigationsUniversities Space Research AssociationGreenbeltUSA
  3. 3.Korea Ocean Research and Development InstituteAnsanKorea

Personalised recommendations