Climate Dynamics

, Volume 39, Issue 5, pp 1073–1092 | Cite as

Glacial-interglacial water cycle, global monsoon and atmospheric methane changes

  • Zhengtang GuoEmail author
  • Xin Zhou
  • Haibin Wu


The causes of atmospheric methane (CH4) changes are still a major contention, in particular with regards to the relative contributions of glacial-interglacial cycles, monsoons in both hemispheres and the late Holocene human intervention. Here, we explore the CH4 signals in the Antarctic EPICA Dome C and Vostok ice records using the methods of timeseries analyses and correlate them with insolation and geological records to address these issues. The results parse out three distinct groups of CH4 signals attributable to different drivers. The first group (~80% variance), well tracking the marine δ18O record, is attributable to glacial-interglacial modulation on the global water cycle with the effects shared by wetlands at all latitudes, from monsoonal and non-monsoonal regions in both hemispheres. The second group (~15% variance), centered at the ~10-kyr semi-precession frequency, is linkable with insolation-driven tropical monsoon changes in both hemispheres. The third group (~5% variance), marked by millennial frequencies, is seemingly related with the combined effect of ice-volume and bi-hemispheric insolation changes at the precession bands. These results indicate that bi-hemispheric monsoon changes have been a constant driver of atmospheric CH4. This mechanism also partially explains the Holocene CH4 reversal since ~5 kyr BP besides the human intervention. In the light of these results, we propose that global monsoon can be regarded as a system consisting of two main integrated components, one primarily driven by the oscillations of Inter-Tropical Convergence Zone (ITCZ) in response to the low-latitude summer insolation changes, anti-phase between the two hemispheres (i.e. the ITCZ monsoon component); and another modulated by the glacial-interglacial cycles, mostly synchronous at the global scale (i.e. the glacial-interglacial monsoon component). Although atmospheric CH4 record integrates all wetland processes, including significant non-monsoonal contributions, it is the only and probably the best proxy available to reflect the past changes of global monsoon. However, the utility of CH4 as a proxy of monsoon changes at any specific location is compromised by its bi-hemispheric nature.


Pleistocene Greenhouse gases Loess Global monsoon 



This study is supported by the National Basic Research Program of China (2010CB950200) and the National Natural Science Foundation of China (40730104). Thanks are extended to Prof. W. F. Ruddiman and Prof. P. X. Wang for constructive advices and discussions. We also thank the two anonymous reviewers for their comments and suggestions that have greatly improved the manuscript.


  1. Adegbie AT, Schneider RR, Rohl U, Wefer G (2003) Glacial millennial-scale fluctuations in central African precipitation recorded in terrigenous sediment supply and freshwater signals offshore Cameroon. Palaeogeogr Palaeoecol Palaeocl 197:323–333Google Scholar
  2. Aselmann I, Crutzen PJ (1989) Global distribution of natural fresh-water wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J Atmos Chem 8:307–358Google Scholar
  3. Barker P, Williamson D, Gasse F, Gibert E (2003) Climatic and volcanic forcing revealed in a 50,000-year diatom record from Lake Massoko, Tanzania. Quat Res 60:368–376Google Scholar
  4. Bartlett KB, Harriss RC (1993) Review and assessment of methane emissions from wetlands. Chemosphere 26:261–320Google Scholar
  5. Bassinot FC, Labeyrie LD, Vincent E, Quidelleur X, Shackleton NJ, Lancelot Y (1994) The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth Planet Sci Lett 126:91–108Google Scholar
  6. Becquey S, Gersonde R (2003) A 0.55-Ma paleotemperature record from the Subantarctic zone: implications for Antarctic Circumpolar Current development. Paleoceanography 18:1014. doi: 10.1029/2000PA000576 Google Scholar
  7. Beerling D, Berner RA, Mackenzie FT, Harfoot MB, Pyle JA (2009) Methane and the CH4 related greenhouse effect over the past 400 million years. Am J Sci 309(2):97–113. doi: 10.2475/02.2009.01 Google Scholar
  8. Berger A (1978) Long-term variations of daily insolation and Quaternary climate changes. J Atmos Sci 35:2362–2367Google Scholar
  9. Berger A, Loutre MF, Melice JL (2006) Equatorial insolation: from the precession harmonics to eccentricity frequencies. Clim Past 2:131–136Google Scholar
  10. Bonnefille R, Chalié F (2000) Pollen-inferred precipitation time-series from equatorial mountains, Africa, the last 40 kyr BP. Global Planet Change 26:25–50Google Scholar
  11. Brook EJ (2009) Palaeoclimate atmospheric carbon footprints? Nat Geosci 2:170–172Google Scholar
  12. Brook EJ, Harder S, Severinghaus J, Steig EJ, Sucher CM (2000) On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochem Cycle 14:559–572Google Scholar
  13. Cao MK, Marshall S, Gregson K (1996) Global carbon exchange and methane emissions from natural wetlands: application of a process-based model. J Geophys Res Atmos 101:14399–14414Google Scholar
  14. Cardenas ML, Gosling WD, Sherlock SC, Poole I, Pennington RT, Mothes P (2011) The response of vegetation on the Andean Flank in Western Amazonia to Pleistocene climate change. Science 331(6020):1055–1058. doi: 10.1126/science.1197947 Google Scholar
  15. Chappellaz J, Blunier T, Raynaud D, Barnola JM, Schwander J, Stauffer B (1993) Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP. Nature 366:443–445Google Scholar
  16. Chappellaz J, Blunier T, Kints S, Dallenbach A, Barnola JM, Schwander J, Raynaud D, Stauffer B (1997a) Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Holocene. J Geophys Res Atmos 102:15987–15997Google Scholar
  17. Chappellaz J, Brook E, Blunier T, Malaize B (1997b) CH4 and δ18O of O2 records from Antarctic and Greenland ice: a clue for stratigraphic disturbance in the bottom part of the Greenland Ice Core Project and the Greenland Ice Sheet Project 2 ice cores. J Geophys Res Oceans 102:26547–26557Google Scholar
  18. Chen FH, Bloemendal J, Zhang PZ, Liu GX (1999) An 800 ky proxy record of climate from lake sediments of the Zoige Basin, eastern Tibetan Plateau. Palaeogeogra Palaeoecol Palaeocl 151:307–320Google Scholar
  19. Clemens S, Prell W, Murray D, Shimmield G, Weedon G (1991) Forcing mechanisms of the Indian-Ocean monsoon. Nature 353:720–725Google Scholar
  20. Clemens SC, Murray DW, Prell WL (1996) Nonstationary phase of the Plio-Pleistocene Asian monsoon. Science 274:943–948. doi: 10.1126/science.274.5289.943 Google Scholar
  21. Cosford J, Qing HR, Eglington B, Mattey D, Yuan DX, Zhang ML, Cheng H (2008) East Asian monsoon variability since the Mid-Holocene recorded in a high-resolution, absolute-dated aragonite speleothem from eastern China. Earth Planet Sci Lett 275:296–307Google Scholar
  22. Cox PM, Harrie PP, Huntingford C, Betts RA, Collins M, Jones CD, Jupp TE, Marengo JA, Nobre CA (2008) Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature 453:212–215Google Scholar
  23. Crutzen PJ, Aselmann I, Seil W (1986) Methane production by domestic animals, wild ruminants, other herbivorous fauna, and human. Tellus B 38:271–284Google Scholar
  24. Cruz FW, Burns SJ, Karmann I, Sharp WD, Vuille M, Cardoso AO, Ferrari JA, Dias PLS, Viana O (2005) Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434:63–66Google Scholar
  25. de Garidel-Thoron T, Rosenthal Y, Bassinot F, Beaufort L (2005) Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years. Nature 433:294–298Google Scholar
  26. de Vernal A, Hillaire-Marcel C (2008) Natural variability of Greenland climate, vegetation, and ice volume during the past million years. Science 320:1622–1625Google Scholar
  27. deMenocal PB (1995) Plio-Pleistocene African climate. Science 270:53–59Google Scholar
  28. Ding ZT, Liu TS, Rutter NW, Yu ZW, Guo ZT, Zhu RX (1995) Ice-volume forcing of East Asian winter monsoon variations in the past 800,000 years. Quat Res 44(2):149–159Google Scholar
  29. Ding YH, Li CY, Liu YJ (2004) Overview of the South China Sea monsoon experiment. Adv Atmos Sci 21(3):343–360. doi: 10.1007/bf02915563 Google Scholar
  30. Fawcett PJ, Werne JP, Anderson RS, Heikoop JM, Brown ET, Berke MA, Smith SJ, Goff F, Donohoo-Hurley L, Cisneros-Dozal LM, Schouten S, Sinninghe Damste JS, Huang Y, Toney J, Fessenden J, WoldeGabriel G, Atudorei V, Geissman JW, Allen CD (2011) Extended megadroughts in the southwestern United States during Pleistocene interglacials. Nature 470(7335):518–521Google Scholar
  31. Fischer H, Behrens M, Bock M, Richter U, Schmitt J, Loulergue L, Chappellaz J, Spahni R, Blunier T, Leuenberger M, Stocker TF (2008) Changing boreal methane sources and constant biomass burning during the last termination. Nature 452:864–867Google Scholar
  32. Fuller DQ, van Etten J, Manning K, Castillo C, Kingwell-Banham E, Weisskopf A, Qin L, Sato Y-I, Hijmans RJ (2011) The contribution of rice agriculture and livestock pastoralism to prehistoric methane levels: an archaeological assessment. Holocene. doi: 10.1177/0959683611398052 Google Scholar
  33. Gamiz-Fortis SR, Pozo-Vazquez D, Esteban-Parra MJ, Castro-Diez Y (2002) Spectral characteristics and predictability of the NAO assessed through Singular Spectral Analysis. J Geophys Res Atmos 107:4685. doi: 10.1029/2001JD001436 Google Scholar
  34. Gasse F (2000) Hydrological changes in the African tropics since the Last Glacial Maximum. Quat Sci Rev 19:189–211Google Scholar
  35. Ghil M, Allen MR, Dettinger MD, Ide K, Kondrashov D, Mann ME, Robertson AW, Saunders A, Tian Y, Varadi F, Yiou P (2002) Advanced spectral methods for climatic timeseries. Rev Geophys 40:1003. doi: 10.1029/2000RG000092 Google Scholar
  36. Griffiths ML, Drysdale RN, Gagan MK, Zhao JX, Ayliffe LK, Hellstrom JC, Hantoro WS, Frisia S, Feng YX, Cartwright I, Pierre ES, Fischer MJ, Suwargadi BW (2009) Increasing Australian-Indonesian monsoon rainfall linked to early Holocene sea-level rise. Nat Geosci 2:636–639Google Scholar
  37. Guo ZT, Liu TS, Fédoroff N, Wei LY, Ding ZL, Wu NQ, Lu HY, Jiang WY, An ZS (1998) Climate extremes in loess of China coupled with the strength of deep-water formation in the North Atlantic. Glob Planet Change 18(3–4):113–128Google Scholar
  38. Guo ZT, Biscaye P, Wei LY, Chen XH, Peng SZ, Liu TS (2000) Summer monsoon varatiations over the last 1.2 Ma from the weathering of loess-soil sequences in China. Geophys Res Lett 27:1751–1754Google Scholar
  39. Guo ZT, Peng SZ, Hao QZ, Biscaye PE, An ZS, Liu TS (2004) Late Miocene-Pliocene development of Asian aridification as recorded in the Red-Earth Formation in northern China. Glob Planet Change 41(3–4):135–145. doi: 10.1016/j.gloplacha.2004.01.002 Google Scholar
  40. Guo ZT, Berger A, Yin QZ, Qin L (2009) Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records. Clim Past 5:21–31Google Scholar
  41. Halley E (1986) An historical account of the trade winds and monsoons observable in the seas between and near the tropics with an attempt to assign the physical cause of the said wind. Phil Trans R Soc Lond 16:153–168Google Scholar
  42. Haug GH, Hughen KA, Sigman DM, Peterson LC, Rohl U (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293:1304–1308Google Scholar
  43. Horikawa K, Murayama M, Minagawa M, Kato Y, Sagawa T (2010) Latitudinal and downcore (0–750 ka) changes in n-alkane chain lengths in the eastern equatorial Pacific. Quat Res 73(3):573–582. doi: 10.1016/j.yqres.2010.01.001 Google Scholar
  44. Hovan SA, Rea DK, Pisias NG, Shackleton NJ (1989) A direct link between the China loess and marine δ18O records—Aeolian flux to the North Pacific. Nature 340:296–298Google Scholar
  45. Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP Version 2.1. Geophys Res Lett 36(17):L17808. doi: 10.1029/2009gl040000 Google Scholar
  46. Hutchinson GE (1954) The biochemistry of the terrestrial atmosphere. In: Kuiper GP (ed) The solar system. Chcago Press, Chicago, pp 371–433Google Scholar
  47. Iriondo M (2000) Patagonian dust in Antarctica. Quat Int 68:83–86Google Scholar
  48. Jiang DB, Lang XM (2010) Last Glacial Maximum East Asian monsoon: results of PMIP simulations. J Clim 23:5030–5038Google Scholar
  49. Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317:793–796Google Scholar
  50. Kaplan JO (2002) Wetlands at the Last Glacial Maximum: distribution and methane emissions. Geophys Res Lett 29(6):1079. doi: 10.1029/2001gl013366 Google Scholar
  51. Kaplan JO, Folberth G, Hauglustaine DA (2006) Role of methane and biogenic volatile organic compound sources in late glacial and Holocene fluctuations of atmospheric methane concentrations. Glob Biogeochem Cycles 20:GB2016. doi: 10.1029/2005GB002590 Google Scholar
  52. Karl DM, Beversdorf L, Bjorkman KM, Church MJ, Martinez A, DeLong EF (2008) Aerobic production of methane in the sea. Nat Geosci 1:473–478Google Scholar
  53. Kelly MJ, Edwards RL, Cheng H, Yuan D, Cai Y, Zhang M, Lin Y, An Z (2006) High resolution characterization of the Asian Monsoon between 146,000 and 99,000 years B.P. from Dongge Cave, China and global correlation of events surrounding Termination II. Palaeogeogra Palaeoecol Palaeocl 236:20–38Google Scholar
  54. Keppler F, Hamilton JTG, Brass M, Rockmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191Google Scholar
  55. King AL, Howard WR (2000) Middle Pleistocene sea-surface temperature change in the southwest Pacific Ocean on orbital and suborbital time scales. Geology 28:659–662Google Scholar
  56. Kukla G (1987) Loess stratigraphy in central China. Quat Sci Rev 6:191–219Google Scholar
  57. Kutzbach JE (1981) Monsoon climate of the early Holocene—climate experiment with the earths orbital parameters for 9,000 years ago. Science 214:59–61Google Scholar
  58. Kutzbach JE, Liu Z (1997) Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene. Science 278:440–443Google Scholar
  59. Lambert F, Delmonte B, Petit JR, Bigler M, Kaufmann PR, Hutterli MA, Stocker TF, Ruth U, Steffensen JP, Maggi V (2008) Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452:616–619Google Scholar
  60. Landais A, Dreyfus G, Capron E, Masson-Delmotte V, Sanchez-Goni MF, Desprat S, Hoffmann G, Jouzel J, Leuenberger M, Johnsen S (2010) What drives the millennial and orbital variations of δ18O-atm? Quat Sci Rev 29:235–246Google Scholar
  61. Lehner B, Doll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296:1–22Google Scholar
  62. Lestari RK, Iwasaki T (2006) A GCM study on the roles of the seasonal marches of the SST and land-sea thermal contrast in the onset of the Asian summer monsoon. J Meteorol Soc Jpn 84:69–83Google Scholar
  63. Li Q, Wang P, Zhao Q, Tian J, Cheng X, Jian Z, Zhong G, Chen M (2008) Paleoceanography of the mid-Pleistocene South China Sea. Quat Sci Rev 27:1217–1233Google Scholar
  64. Lisiecki LE, Raymo ME (2005) A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA1003. doi: 10.1029/2004PA001071 Google Scholar
  65. Liu TS, Guo ZT, Liu JQ, Han JM, Ding ZL, Gu ZY, Wu NQ (1995) Variations of eastern Asian monsoon over the last 140,000 years. Bull Soc Geol France 166:221–229Google Scholar
  66. Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola JM, Raynaud D, Stocker TF, Chappellaz J (2008) Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453:383–386Google Scholar
  67. Luthi D, Le Floch M, Bereiter B, Blunier T, Barnola JM, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382Google Scholar
  68. Magee JW, Miller GH, Spooner NA, Questiaux D (2004) Continuous 150 ky monsoon record from Lake Eyre, Australia: insolation-forcing implications and unexpected Holocene failure. Geology 32:885–888Google Scholar
  69. Markgraf V, Baumgartner TR, Bradbury JP, Diaz HF, Dunbar RB, Luckman BH, Seltzer GO, Swetnam TW, Villalba R (2000) Paleoclimate reconstruction along the Pole-Equator-Pole transect of the Americas (PEP 1). Quat Sci Rev 19:125–140Google Scholar
  70. Marković SB, Hambach U, Catto N, Jovanović M, Buggle B, Machalett B, Zöller L, Glaser B, Frechen M (2009) The Middle and Late Pleistocene loess sequences at Batajnica, Vojvodina, Serbia. Quat Int 198:255–266Google Scholar
  71. Martínez-Garcia A, Rosell-Melé A, Geibert W, Gersonde R, MasquéP, Gaspari V, Barbante C (2009) Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma. Paleoceanography 24(1):PA1207. doi: 10.1029/2008pa001657 Google Scholar
  72. Matthews E, Fung I (1987) Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Glob Biogeochem Cycles 1:61–86Google Scholar
  73. McClymont EL, Rosell-Mele A, Giraudeau J, Pierre C, Lloyd JM (2005) Alkenone and coccolith records of the mid-pleistocene in the south-east Atlantic: implications for the u-37(k) index and South African climate. Quat Sci Rev 24:1559–1572Google Scholar
  74. McIntyre A, Molfino B (1996) Forcing of Atlantic equatorial and subpolar millennial cycles by precession. Science 274:1867–1870Google Scholar
  75. McManus JF, Oppo DW, Cullen JL (1999) A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283(5404):971–975Google Scholar
  76. Milankovitch M (1948) Ausbau Und Gegenwartiger Stand Der Astronomischen Theorie Der Erdgeschichtlichen Klimate. Experientia 4(11):413–418Google Scholar
  77. Min S-K, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. Nature 470(7334):378–381Google Scholar
  78. Mohtadi M, Lückge A, Steinke S, Groeneveld J, Hebbeln D, Westphal N (2010) Late Pleistocene surface and thermocline conditions of the eastern tropical Indian Ocean. Quat Sci Rev 29(7–8):887–896. doi: 10.1016/j.quascirev.2009.12.006 Google Scholar
  79. Parrenin F, Barnola JM, Beer J, Blunier T, Castellano E, Chappellaz J, Dreyfus G, Fischer H, Fujita S, Jouzel J, Kawamura K, Lemieux-Dudon B, Loulergue L, Masson-Delmotte V, Narcisi B, Petit JR, Raisbeck G, Raynaud D, Ruth U, Schwander J, Severi M, Spahni R, Steffensen JP, Svensson A, Udisti R, Waelbroeck C, Wolff E (2007) The EDC3 chronology for the EPICA Dome C ice core. Clim Past 3:485–497Google Scholar
  80. Partridge TC, deMenocal PB, Lorentz SA, Paiker MJ, Vogel JC (1997) Orbital forcing of climate over South Africa: A 200,000-year rainfall record from the Pretoria Saltpan. Quaternary Sci Rev 16:1125–1133Google Scholar
  81. Pausata FSR, Battisti DS, Nisancioglu KH, Bitz CM (2011) Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nat Geosci 4:474–480. doi: 10.1038/ngeo1169 Google Scholar
  82. Penland C, Ghil M, Weikmann K (1991) Adaptive filtering and maximum entropy spectra with application to changes in atmospheric angular momentum. J Geophys Res 96:22659–22671Google Scholar
  83. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davisk M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436Google Scholar
  84. Pisias NG, Clark PU, Brook EJ (2010) Modes of global climate variability during Marine Isotope Stage 3 (60–26 ka). J Clim 23:1581–1588Google Scholar
  85. Poore RZ, Pavich MJ, Grissino-Mayer HD (2005) Record of the North American southwest monsoon from Gulf of Mexico sediment cores. Geology 33:209–212Google Scholar
  86. Prokopenko AA, Williams DF, Kuzmin MI, Karabanov EB, Khursevich GK, Peck JA (2002) Muted climate variations in continental Siberia during the mid-Pleistocene epoch. Nature 418:65–68Google Scholar
  87. Quay PD, King SL, Stutsman J, Wilbur DO, Steele LP (1991) Carbon isotope composition of CH4: fossil and biomass burning source strengths. Glob Biogeochem Cycles 5:25–47Google Scholar
  88. Rossignol-Strick M, Paterne M, Bassinot FC, Emeis KC, De Lange GJ (1998) An unusual mid-Pleistocene monsoon period over Africa and Asia. Nature 392:269–272Google Scholar
  89. Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Clim Change 61:261–293Google Scholar
  90. Ruddiman WF (2007) The early anthropogenic hypothesis: challenges and responses. Rev Geophys 45:RG4001. doi: 10.1029/2006RG000207 Google Scholar
  91. Ruddiman WF, Raymo ME (2003) A methane-based time scale for Vostok ice. Quat Sci Rev 22:141–155Google Scholar
  92. Ruddiman WF, Thomson JS (2001) The case for human causes of increased atmospheric CH4. Quat Sci Rev 20:1769–1777Google Scholar
  93. Ruddiman WF, Guo ZT, Zhou X, Wu HB, Yu YY (2008) Early rice farming and anomalous methane trends. Quat Sci Rev 27:1291–1295Google Scholar
  94. Schmidt GA, Shindell DT, Harder S (2004) A note on the relationship between ice core methane concentrations and insolation. Geophys Res Lett 31:L23206. doi: 10.1029/2004GL021083 Google Scholar
  95. Seltzer G, Rodbell D, Burns S (2000) Isotopic evidence for late Quaternary climatic change in tropical South America. Geology 28:35–38Google Scholar
  96. Sepulcre S, Vidal L, Tachikawa K, Rostek F, Bard E (2011) Sea-surface salinity variations in the northern Caribbean Sea across the Mid-Pleistocene Transition. Clim Past 7(1):75–90. doi: 10.5194/cp-7-75-2011 Google Scholar
  97. Singarayer JS, Valdes PJ, Friedlingstein P, Nelson S, Beerling DJ (2011) Late Holocene methane rise caused by orbitally controlled increase in tropical sources. Nature 470:82–85Google Scholar
  98. Souma K, Wang YQ (2010) A comparison between the effects of snow albedo and infiltration of melting water of Eurasian snow on East Asian summer monsoon rainfall. J Geophys Res Atmos 115:D02115. doi: 10.1029/2009JD012189 Google Scholar
  99. Spahni R, Chappellaz J, Stocker TF, Loulergue L, Hausammann G, Kawamura K, Fluckiger J, Schwander J, Raynaud D, Masson-Delmotte V, Jouzel J (2005) Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores. Science 310:1317–1321Google Scholar
  100. Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84(9):1205–1217. doi: 10.1175/BAMS-84-9-1205 Google Scholar
  101. Vandenberghe J (2000) A global perspective of the European chronostratigraphy for the past 650 ka. Quat Sci Rev 19(17–18):1701–1707Google Scholar
  102. Vautard R, Yiou P, Ghil M (1992) Singular-spectrum analysis: a toolkit for short, noisy chaitic signals. Phys D 58:95–126Google Scholar
  103. Verschuren D, Damste JSS, Moernaut J, Kristen I, Blaauw M, Fagot M, Haug GH, Members CP (2009) Half-precessional dynamics of monsoon rainfall near the East African Equator. Nature 462:637–641Google Scholar
  104. Wadham JL, Tranter M, Tulaczyk S, Sharp M (2008) Subglacial methanogenesis: a potential climatic amplifier? Glob Biogeochem Cycles 22:GB2021. doi: 10.1029/2007GB002951 Google Scholar
  105. Wahlen M (1993) The global methane cycle. Annu Rev Earth Planet Sci 21:407–426Google Scholar
  106. Walter BP, Heimann M (2000) A process-based, climate-sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climate. Glob Biogeochem Cycles 14:745–765Google Scholar
  107. Wang B (2006) The Asian monsoon. Springer, Berlin, p 787Google Scholar
  108. Wang PX (2009) Global monsoon in a geological perspective. Chin Sci Bull 54:1113–1136Google Scholar
  109. Wang B, Ding QH (2008) Global monsoon: dominant mode of annual variation in the tropics. Dyn Atmos Oceans 44:165–183Google Scholar
  110. Wang PX, Tian J, Cheng XR, Liu CL, Xu J (2003) Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event. Geology 31(3):239–242Google Scholar
  111. Wang XF, Auler AS, Edwards RL, Cheng H, Cristalli PS, Smart PL, Richards DA, Shen CC (2004) Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432:740–743Google Scholar
  112. Wang PX, Clemens S, Beaufort L, Braconnot P, Dickens GR, Huber M, Jian ZM, Kershaw P, Sarnthein M (2005) Evolution and variability of the Asian monsoon system: state of the art and outstanding issues. Quat Sci Rev 24:595–629Google Scholar
  113. Wang Y, Cheng H, Edwards RL, Kong X, Shao X, Chen S, Wu J, Jiang X, Wang X, An Z (2008) Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451:1090–1093Google Scholar
  114. Winckler G, Anderson RF, Fleisher MQ, Mcgee D, Mahowald N (2008) Covariant glacial-interglacial dust fluxes in the equatorial Pacific and Antarctica. Science 320:93–96Google Scholar
  115. Wolff E (2011) Global change: methane and monsoons. Nature 470(7332):49–50Google Scholar
  116. Wolff E, Spahni R (2007) Methane and nitrous oxide in the ice core record. Phil Trans R Soc A 365:1775–1792Google Scholar
  117. Wyrwoll KH, Miller GH (2001) Initiation of the Australian summer monsoon 14,000 years ago. Quat Int 83–85:119–128Google Scholar
  118. Wyrwoll KH, Valdes P (2003) Insolation forcing of the Australian monsoon as controls of Pleistocene mega-lake events. Geophys Res Lett 30:2279. doi: 10.1029/2003GL018486 Google Scholar
  119. Yasunari T (2007) Role of land-atmosphere interaction on Asian monsoon climate. J Meteorol Soc Jpn 85B:55–75Google Scholar
  120. Yin QZ, Guo ZT (2006) Mid-Pleistocene vermiculated red soils in southern China as an indication of unusually strengthened East Asian monsoon. Chin Sci Bull 51:213–220Google Scholar
  121. Yuan D, Cheng H, Lawrence Edwards R, Dykoski CA, Kelly MJ, Zhang M, Qing J, Lin Y, Wang Y, Wu J, Dorale JA, An Z, Cai Y (2004) Timing, duration, and transitions of the last interglacial Asian monsoon. Science 304:575–578Google Scholar
  122. Zagwijn W (1996) The cromerian complex stage of the Netherlands and correlation with other areas in Europe. In: Tunrner C (ed) The early Middle Pleistocene in Europe. Balkema, Rotterdam, pp 145–172Google Scholar
  123. Zheng Z, Lei ZQ (1999) A 400,000 year record of vegetational and climatic changes from a volcanic basin, Leizhou Peninsula, southern China. Palaeogeogra Palaeoecol Palaeocl 145:339–362Google Scholar
  124. Ziegler M, Lourens LJ, Tuenter E, Reichart GJ (2010) High Arabian Sea productivity conditions during MIS 13—odd monsoon event or intensified overturning circulation at the end of the Mid-Pleistocene transition? Clim Past 6(1):63–76. doi: 10.5194/cp-6-63-2010 Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  2. 2.School of Earth and Space Sciences & Institute of Polar EnvironmentUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations