Climate Dynamics

, Volume 38, Issue 7–8, pp 1421–1431 | Cite as

Greening in the circumpolar high-latitude may amplify warming in the growing season

  • Jee-Hoon Jeong
  • Jong-Seong Kug
  • Baek-Min Kim
  • Seung-Ki Min
  • Hans W. Linderholm
  • Chang-Hoi Ho
  • David Rayner
  • Deliang Chen
  • Sang-Yoon Jun
Article

Abstract

We present a study that suggests greening in the circumpolar high-latitude regions amplifies surface warming in the growing season (May–September) under enhanced greenhouse conditions. The investigation used a series of climate simulations with the Community Atmospheric Model version 3—which incorporates a coupled, dynamic global vegetation model—with and without vegetation feedback, under both present and doubled CO2 concentrations. Results indicate that climate warming and associated changes promote circumpolar greening with northward expansion and enhanced greenness of both the Arctic tundra and boreal forest regions. This leads to additional surface warming in the high-latitudes in the growing season, primarily through more absorption of incoming solar radiation. The resulting surface and tropospheric warming in the high-latitude and Arctic regions weakens prevailing tropospheric westerlies over 45–70N, leading to the formation of anticyclonic pressure anomalies in the Arctic regions. These pressure anomalies resemble the anomalous circulation pattern during the negative phase of winter Arctic Oscillation. It is suggested that these circulation anomalies reinforce the high-latitude and Arctic warming in the growing season.

Keywords

Vegetation Arctic warming Arctic greening Climate model Future climate Atmospheric circulation Surface energy budget 

References

  1. Alexander MA, Bhatt US, Walsh JE, Timlin MS, Miller JS, Scott JD (2004) The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J Climate 17(5):890–905CrossRefGoogle Scholar
  2. ACIA (2005) Arctic Climate Impact Assessment. Cambridge University Press, CambridgeGoogle Scholar
  3. Bonan GB (2008) Ecological climatology: concepts and applications. Cambridge University Press, CambridgeGoogle Scholar
  4. Bonan GB, Levis S (2006) Evaluating aspects of the community land and atmosphere models (CLM3 and CAM3) using a dynamic global vegetation model. J Climate 19(11):2290–2301CrossRefGoogle Scholar
  5. Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359(6397):716–718CrossRefGoogle Scholar
  6. Bunn AG, Goetz SJ, Kimball JS, Zhang K (2007) Northern high-latitude ecosystems respond to climate change. EOS 88(34):333–340CrossRefGoogle Scholar
  7. Chapin FS (1983) Direct and indirect effects of temperature on arctic plants. Polar Biol 2(1):47–52CrossRefGoogle Scholar
  8. Chapin FS (1987) Environmental controls over growth of tundra plants. Ecol Bull 38:69–76Google Scholar
  9. Chapin FS, Sturm M, Serreze MC, McFadden JP, Key JR, Lloyd AH, McGuire AD, Rupp TS, Lynch AH, Schimel JP, Beringer J, Chapman WL, Epstein HE, Euskirchen ES, Hinzman LD, Jia G, Ping CL, Tape KD, Thompson CDC, Walker DA, Welker JM (2005) Role of land-surface changes in Arctic summer warming. Science 310(5748):657–660CrossRefGoogle Scholar
  10. Chapman WL, Walsh JE (2007) Simulations of Arctic temperature and pressure by global coupled models. J Climate 20(4):609–632CrossRefGoogle Scholar
  11. Collins WD, Rasch PJ, Boville BA, Hack JJ, Williamson DL, Kiehl JT, Briegleb B, Bitz C, Lin S-J, Zhang M, Dai Y (2004) Description of the NCAR community atmosphere model (CAM 3.0). National Center for Atmospheric Research, Boulder, ColoradoGoogle Scholar
  12. Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006) The Community Climate System Model version 3 (CCSM3). J Climate 19(11):2122–2143CrossRefGoogle Scholar
  13. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173CrossRefGoogle Scholar
  14. Deser C, Tomas R, Alexander M, Lawrence D (2010) The seasonal atmospheric response to projected arctic sea ice loss in the late twenty-first century. J Climate 23(2):333–351CrossRefGoogle Scholar
  15. Foley JA (2005) Tipping points in the tundra. Science 310(5748):627–628CrossRefGoogle Scholar
  16. Foley JA, Kutzbach JE, Coe MT, Levis S (1994) Feedbacks between climate and boreal forests during the Holocene Epoch. Nature 371(6492):52–54CrossRefGoogle Scholar
  17. Jeong SJ, Ho CH, Jeong JH (2009) Increase in vegetation greenness and decrease in springtime warming over east Asia. Geophys Res Lett 36:L02710CrossRefGoogle Scholar
  18. Kug J-S, Choi D-H, Jin F–F, Kwon W-T, Ren H-L (2010a) Role of synoptic eddy feedback on polar climate responses to the anthropogenic forcing. Geophys Res Lett 37(14):L14704CrossRefGoogle Scholar
  19. Kug J-S, Jin F–F, Park J, Ren H-L, Kang I-S (2010b) A general rule for synoptic-eddy feedback onto low-frequency flow. Clim Dyn 35(6):1011–1026CrossRefGoogle Scholar
  20. Levis S, Foley JA, Pollard D (1999) Potential high-latitude vegetation feedbacks on CO2-induced climate change. Geophys Res Lett 26(6):747–750CrossRefGoogle Scholar
  21. Levis S, Bonan GB, Vertenstein M, Oleson KW (2004) The community land model’s dynamic global vegetation model (CLM-DGVM). National Center for Atmospheric Research, Boulder, ColoradoGoogle Scholar
  22. Min SK, Zhang XB, Zwiers F (2008) Human-induced arctic moistening. Science 320(5875):518–520Google Scholar
  23. Mooney HA, Canadell J, Chapin FS, Ehleringer JR, Körner C, McMurtrie RE, Parton WJ, Pitelka LF, Shulze E-D (1999) Ecosystem physiology responses to global change. In: Walker BH, Steffen W, Canadell JG, Ingram J (eds) Terrestrial biosphere and global change: implications for natural and managed ecosystems. Cambridge University Press, Cambridge, pp 141–149Google Scholar
  24. Myhre G, Kvalevåg MM, Schaaf CB (2005) Radiative forcing due to anthropogenic vegetation change based on MODIS surface albedo data. Geophys Res Lett 32(21):L21410CrossRefGoogle Scholar
  25. Notaro M, Liu ZY (2008) Statistical and dynamical assessment of vegetation feedbacks on climate over the boreal forest. Clim Dyn 31(6):691–712CrossRefGoogle Scholar
  26. Notaro M, Vavrus S, Liu ZY (2007) Global vegetation and climate change due to future increases in CO2 as projected by a fully coupled model with dynamic vegetation. J Climate 20(1):70–90CrossRefGoogle Scholar
  27. Ogi M, Wallace JM (2007) Summer minimum Arctic sea ice extent and the associated summer atmospheric circulation. Geophys Res Lett 34(12):L12705CrossRefGoogle Scholar
  28. O’ishi R, Abe-Ouchi A (2009) Influence of dynamic vegetation on climate change arising from increasing CO2. Clim Dyn 33(5):645–663CrossRefGoogle Scholar
  29. Oleson KW, Dai Y, Bonan G, Bosilovich M, Dirmeyer PA, Hoffman F, Houser P, Levis S, Niu GY, Thornton P, Vertenstein M, Yang Z-L, Zeng XB (2004) Technical description of the community land model (CLM). National Center for Atmospheric Research, Boulder, ColoradoGoogle Scholar
  30. Overland JE, Wang M (2010) Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A 62(1):1–9Google Scholar
  31. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res-Atmos 108(D14):4407CrossRefGoogle Scholar
  32. Rothrock DA, Yu Y, Maykut GA (1999) Thinning of the Arctic sea-ice cover. Geophys Res Lett 26(23):3469–3472CrossRefGoogle Scholar
  33. Schneider EK, Kirtman BP, Lindzen RS (1999) Tropospheric water vapor and climate sensitivity. J Atmos Sci 56(11):1649–1658CrossRefGoogle Scholar
  34. Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H, Mazhitova G, Nelson FE, Rinke A, Romanovsky VE, Shiklomanov N, Tarnocai C, Venevsky S, Vogel JG, Zimov SA (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58(8):701–714CrossRefGoogle Scholar
  35. Screen JA, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464(7293):1334–1337CrossRefGoogle Scholar
  36. Serreze MC, Walsh JE, Chapin FS, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Change 46(1–2):159–207CrossRefGoogle Scholar
  37. Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol 9(2):161–185CrossRefGoogle Scholar
  38. Solomon S, Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change. Working Group I. (2007) Climate change 2007 the physical science basis: contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  39. Sturm M, Racine C, Tape K (2001) Climate change—Increasing shrub abundance in the Arctic. Nature 411(6837):546–547CrossRefGoogle Scholar
  40. Swann AL, Fung IY, Levis S, Bonan GB, Doney SC (2010) Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. PNAS 107(4):1295–1300CrossRefGoogle Scholar
  41. Tape K, Sturm M, Racine C (2006) The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob Change Biol 12(4):686–702CrossRefGoogle Scholar
  42. Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25(9):1297–1300CrossRefGoogle Scholar
  43. Tjernström M, Graversen RG (2009) The vertical structure of the lower Arctic troposphere analysed from observations and the ERA-40 reanalysis. Q J Roy Meteor Soc 135(639):431–443CrossRefGoogle Scholar
  44. Tucker CJ, Slayback DA, Pinzon JE, Los SO, Myneni RB, Taylor MG (2001) Higher northern latitude normalized difference vegetation index, growing season trends from 1982 to 1999. Int J Biometeorol 45(4):184–190CrossRefGoogle Scholar
  45. Walker MD et al (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci 103(5):1342–1346CrossRefGoogle Scholar
  46. Watson RT (2000) Land use, land-use change, and forestry: a special report of the IPCC. Cambridge University Press, CambridgeGoogle Scholar
  47. Zhang J, Walsh JE (2006) Thermodynamic and hydrological impacts of increasing greenness in Northern high latitudes. J Hydrometeorol 7(5):1147–1163CrossRefGoogle Scholar
  48. Zhou L, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res 106(D17):20069–20083CrossRefGoogle Scholar
  49. Zimov SA, Schuur EAG, Chapin FS (2006) Permafrost and the global carbon budget. Science 312:1612–1613CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jee-Hoon Jeong
    • 1
  • Jong-Seong Kug
    • 2
  • Baek-Min Kim
    • 3
  • Seung-Ki Min
    • 4
  • Hans W. Linderholm
    • 1
  • Chang-Hoi Ho
    • 5
  • David Rayner
    • 1
  • Deliang Chen
    • 1
  • Sang-Yoon Jun
    • 5
  1. 1.Department of Earth SciencesUniversity of GothenburgGothenburgSweden
  2. 2.Korea Ocean Research and Development InstituteAnsanKorea
  3. 3.Korea Polar Research InstituteInchonKorea
  4. 4.Climate Research DivisionEnvironment CanadaTorontoCanada
  5. 5.School of Earth and Environmental SciencesSeoul National UniversitySeoulKorea

Personalised recommendations