Climate Dynamics

, Volume 38, Issue 11–12, pp 2483–2502 | Cite as

Simulation and prediction of the Southern Annular Mode and its influence on Australian intra-seasonal climate in POAMA

  • Andrew G. Marshall
  • Debra Hudson
  • Matthew C. Wheeler
  • Harry H. Hendon
  • Oscar Alves
Article

Abstract

We assess the ability of the Predictive Ocean Atmosphere Model for Australia (POAMA) to simulate and predict the Southern Annular Mode (SAM) and its influence on Australian intra-seasonal climate using a 27-year hindcast dataset. The analysis consists of three stages: (1) prediction of the SAM, (2) simulation of SAM climate anomalies over Australia, and (3) prediction of Australian climate anomalies in association with the SAM. POAMA achieves skilful prediction of the SAM index for lead times out to about 2 weeks with little skill seen beyond 3 weeks when calculated over all hindcast start months; the inherent strong persistence of the SAM appears to be a key factor for its extended-range predictability in a dynamical forecast model. POAMA also simulates SAM climate anomalies over Australia reasonably well despite notable biases in its representation of the SAM to the south and east of the continent. The model reproduces Australian rainfall anomalies most effectively throughout June–November, and least effectively throughout March–May. Skilful prediction of the SAM index, together with realistic simulation of SAM climate anomalies over Australia, translates into more skilful forecasts of rainfall and maximum temperature at intra-seasonal timescales during austral winter and spring. When the SAM is strong in the initial conditions, there is higher skill in forecasting rainfall anomalies over eastern Australia and maximum temperature anomalies over most of the continent during June–November at lead times of 2–3 weeks, compared with when the SAM is weak. The SAM thus contributes to intra-seasonal prediction skill in the Australian region in POAMA.

References

  1. Alves O, Wang G, Zhong A, Smith N, Tzeitkin F, Warren G, Schiller A, Godfrey S, Meyers G (2003) POAMA: Bureau of Meteorology operational coupled model forecast system. In: Proceedings of national drought forum, Brisbane, April 2003, pp 49–56. Available from DPI Publications, Department of Primary Industries, GPO Box 46, Brisbane, QLD 4001, AustraliaGoogle Scholar
  2. Anderson J, van den Dool H, Barnston A, Chen W, Stern W, Ploshay J (1999) Present-day capabilities of numerical and statistical models for atmospheric extratropical seasonal simulation and prediction. Bull Am Meteorol Soc 80:1349–1361CrossRefGoogle Scholar
  3. Barnes EA, Hartmann DL (2010) Dynamical feedbacks of the southern annular mode in winter and summer. J Atmos Sci 67:2320–2330CrossRefGoogle Scholar
  4. Boer GJ, Fourest S, Yu B (2001) The signature of the annular modes in the moisture budget. J Clim 14:3655–3665CrossRefGoogle Scholar
  5. Burgers G, Balmaseda MA, Vossepoel FC, Oldenborgh G, Leeuwen P (2002) Balanced ocean-data assimilation near the Equator. J Phys Ocean 32:2509–2519CrossRefGoogle Scholar
  6. Cai W, Watterson IG (2002) Modes of interannual variability of the southern hemisphere circulation simulated by the CSIRO climate model. J Clim 15:1159–1174CrossRefGoogle Scholar
  7. Colman R, Deschamps L, Naughton M, Rikus L, Sulaiman A, Puri K, Roff G, Sun Z, Embury G (2005) BMRC Atmospheric Model (BAM) version 3.0: comparison with mean climatology. BMRC Research Report no. 108. Bureau of Meteorology, MelbourneGoogle Scholar
  8. Fyfe JC (2003) Separating extratropical zonal wind variability and mean change. J Clim 16:863–874CrossRefGoogle Scholar
  9. Gillett NP, Kell TD, Jones PD (2006) Regional climate impacts of the southern annular mode. Geophys Res Lett 33:L23704. doi:10.1029/2006GL027721 CrossRefGoogle Scholar
  10. Gong D, Wang S (1999) Definition of Antarctic oscillation index. Geophys Res Lett 26:459–462CrossRefGoogle Scholar
  11. Gottschalck J, Wheeler M, Weickmann K, Vitart F, Savage N, Lin H, Hendon H, Waliser D, Sperber K, Nakagawa M, Prestrelo C, Flatau M, Higgins W (2010) A framework for assessing operational Madden-Julian Oscillation forecasts: a CLIVAR MJO Working Group project. Bull Am Meteorol Soc 91:1247–1258CrossRefGoogle Scholar
  12. Hall A, Visbeck M (2002) Synchronous variability in the southern hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J Clim 15:3043–3057CrossRefGoogle Scholar
  13. Hartmann DL, Lo F (1999) Wave-driven zonal flow vacillation in the southern hemisphere. J Atmos Sci 55:1303–1315CrossRefGoogle Scholar
  14. Haylock MR, Peterson TC, Alves LM, Ambrizzi T, Anunciacao YMT, Baez J, Barros VR, Berlato MA, Bidegain M, Coronel G, Corradi V, Garcia VJ, Grimm AM, Karoly D, Marengo JA, Marino MB, Moncunill DF, Nechet D, Quintana J, Rebello E, Rusticucci M, Santos JL, Trebejo I, Vincent LA (2006) Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J Clim 19:1490–1512CrossRefGoogle Scholar
  15. Hendon HH, Liebmann B (1990) The intraseasonal (30–50 day) oscillation of the Australian summer monsoon. J Atmos Sci 47:2909–2924CrossRefGoogle Scholar
  16. Hendon HH, Thompson DWJ, Wheeler MC (2007) Australian rainfall and surface temperature variations associated with the southern hemisphere annular mode. J Clim 20:2452–2467CrossRefGoogle Scholar
  17. Hendon HH, Lim E, Wang G, Alves O, Hudson D (2009) Prospects for predicting two flavors of El Niño. Geophys Res Lett 36:L19793. doi:10.1029/2009GL040100 CrossRefGoogle Scholar
  18. Hudson D, Alves O, Hendon HH, Wang G (2011a) The impact of atmospheric initialisation on seasonal prediction of tropical Pacific SST. Clim Dyn 36:1155–1171CrossRefGoogle Scholar
  19. Hudson D, Alves O, Hendon HH, Marshall AG (2011b) Bridging the gap between weather and seasonal forecasting: intraseasonal forecasting for Australia. Q J R Meteorol Soc 137:673–689CrossRefGoogle Scholar
  20. Jones DA, Weymouth G (1997) An Australian monthly rainfall dataset. Technical Report 70. Bureau of Meteorology, MelbourneGoogle Scholar
  21. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  22. Karoly DJ (1990) The role of transient eddies in the low-frequency zonal variations in the southern hemisphere circulation. Tellus 42A:41–50Google Scholar
  23. Kidson JW (1988) Indices of the southern hemisphere zonal wind. J Clim 1:183–194CrossRefGoogle Scholar
  24. Kidson JW, Watterson IG (1999) The structure and predictability of the “high-latitude mode” in the CSIRO9 general circulation model. J Atmos Sci 56:3859–3873CrossRefGoogle Scholar
  25. Kuroda Y, Kodera K (1998) Interannual variability in the troposphere and stratosphere and stratosphere of the southern hemisphere winter. J Geophys Res 103:13787–13799CrossRefGoogle Scholar
  26. Kushner PJ, Held IM, Delworth TL (2001) Southern hemisphere atmospheric circulation response to global warming. J Clim 14:2238–2249CrossRefGoogle Scholar
  27. L’Heureux ML, Thompson DWJ (2006) Observed relationships between the El Niño-Southern Oscillation and the extratropical zonal-mean circulation. J Clim 19:276–287CrossRefGoogle Scholar
  28. Lim E-P, Hendon HH, Hudson D, Wang G, Alves O (2009) Dynamical forecast of inter-El Niño variations of tropical SST and Australian spring rainfall. Mon Weather Rev 137:3796–3810CrossRefGoogle Scholar
  29. Lim E-P, Hendon HH, Anderson DLT, Charles A, Alves O (2011) Dynamical, statistical-dynamical and multi-model ensemble forecasts of Australian spring season rainfall. Mon Weather Rev 139:958–975CrossRefGoogle Scholar
  30. Lorenz DJ, Hartmann DL (2001) Eddy-zonal flow feedback in the southern hemisphere. J Atmos Sci 58:3312–3327CrossRefGoogle Scholar
  31. Manabe S, Holloway JL (1975) The seasonal variation of the hydrological cycle as simulated by a global model of the atmosphere. J Geophys Res 80:1617–1649CrossRefGoogle Scholar
  32. Marshall GJ (2003) Trends in the southern annular mode from observations and reanalyses. J Clim 16:4134–4143CrossRefGoogle Scholar
  33. Marshall AG, Hudson D, Wheeler MC, Hendon HH, Alves O (2011) Assessing the simulation and prediction of rainfall associated with the MJO in the POAMA seasonal forecast system. Clim Dyn. doi:10.1007/s00382-010-0948-2
  34. Meinke H, Stone RC (2005) Seasonal and inter-annual climate forecasting: the new tool for increasing preparedness to climate variability and change in agricultural planning and operations. Clim Change 70:221–253CrossRefGoogle Scholar
  35. Meneghini B, Simmonds I, Smith IN (2007) Association between Australian rainfall and the southern annular mode. Int J Climatol 27:109–121CrossRefGoogle Scholar
  36. Mo KC, White GH (1985) Teleconnections in the southern hemisphere. Mon Weather Rev 113:22–37CrossRefGoogle Scholar
  37. Nordeng T-E (1994) Extended versions of the convective parameterization scheme at ECMWF and their impact upon the mean climate and transient activity of the model in the tropics. Research Department Technical Memorandum No. 206, ECMWF, Shinfield Park Reading RG2 9AX, UKGoogle Scholar
  38. Oke PR, Schiller A, Griffin DA, Brassington GB (2005) Ensemble data assimilation for an eddy-resolving ocean model of the Australian region. Q J R Meteorol Soc 131:3301–3311CrossRefGoogle Scholar
  39. Rashid H, Hendon HH, Wheeler M, Alves O (2010) Prediction of the Madden-Julian Oscillation with the POAMA dynamical seasonal prediction system. Clim Dyn 36:649–661Google Scholar
  40. Reason CJC, Rouault M (2005) Links between Antarctic Oscillation and winter rainfall over western South Africa. Geophys Res Lett 32:L07705. doi:10.1029/2005GL022419 CrossRefGoogle Scholar
  41. Renwick J, Thompson DWJ (2006) The southern annular mode and New Zealand climate. Water Atmos 14:24–25Google Scholar
  42. Risbey JS, Pook MJ, McIntosh PC, Wheeler MC, Hendon HH (2009) On the remote drivers of rainfall variability in Australia. Mon Weather Rev 137:3233–3253CrossRefGoogle Scholar
  43. Robinson WA (1991) The dynamics of the zonal index in a simple model of the atmosphere. Tellus 43A:295–305Google Scholar
  44. Rogers JC, van Loon H (1982) Spatial variability of sea level pressure and 500 mb height anomalies over the southern hemisphere. Mon Weather Rev 110:1375–1392CrossRefGoogle Scholar
  45. Schiller A, Godfrey JS, McIntosh P, Meyers G (1997) A global ocean general circulation model climate variability studies. CSIRO Marine Research Report No. 227Google Scholar
  46. Schiller A, Godfrey JS, McIntosh PC, Meyers G, Smith NR, Alves O, Wang G, Fiedler R (2002) A new version of the Australian community ocean model for seasonal climate prediction. CSIRO Marine Research Report No. 240Google Scholar
  47. Sen Gupta A, England MH (2006) Coupled ocean–atmosphere–ice response to variations in the southern annular mode. J Clim 19:3677–3692CrossRefGoogle Scholar
  48. Sen Gupta A, England MH (2007) Coupled ocean–atmosphere feedback in the southern annular mode. J Clim 20:4457–4486CrossRefGoogle Scholar
  49. Silvestri GE, Vera CS (2003) Antarctic oscillation signal on precipitation anomalies over southeastern South America. Geophys Res Lett 30:2115. doi:10.1029/2003GL018277 CrossRefGoogle Scholar
  50. Smith NR, Blomley JE, Meyers G (1991) A univariate statistical interpolation scheme for subsurface thermal analyses in the tropical oceans. Prog Oceanogr 28:219–256CrossRefGoogle Scholar
  51. Spillman C, Alves O (2009) Dynamical seasonal prediction of summer sea surface temperatures in the Great Barrier Reef. Coral Reefs 28:197–206CrossRefGoogle Scholar
  52. Stockdale TN (1997) Coupled ocean–atmosphere forecasts in the presence of climate drift. Mon Weather Rev 125:809–818CrossRefGoogle Scholar
  53. Thompson DWJ, Wallace JM (1998) The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300CrossRefGoogle Scholar
  54. Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016CrossRefGoogle Scholar
  55. Tiedke M (1989) A comprehensive mass flux scheme for cumulus parameterisation in large-scale models. Mon Weather Rev 117:1779–1800CrossRefGoogle Scholar
  56. Toth Z, Peña M, Vintzileos A (2007) Bridging the gap between weather and climate forecasting: research priorities for intraseasonal prediction. Bull Am Meteorol Soc 88:1427–1429CrossRefGoogle Scholar
  57. Trenberth KE (1979) Interannual variability of the 500 mb zonal-mean flow in the southern hemisphere. Mon Weather Rev 107:1515–1524CrossRefGoogle Scholar
  58. Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  59. Valcke S, Terray L, Piacentini A (2000) OASIS 2.4 Ocean Atmospheric Sea Ice Soil user’s guide, version 2.4. CERFACS technical report, CERFACS TR/CMGC/00-10, 85 ppGoogle Scholar
  60. Vitart F (2004) Monthly forecasting at ECMWF. Mon Weather Rev 132:2761–2779CrossRefGoogle Scholar
  61. Vitart F, Molteni F (2010) Simulation of the Madden-Julian Oscillation and its teleconnections in the ECMWF forecast system. Q J R Meteorol Soc 136:842–855CrossRefGoogle Scholar
  62. Vitart F, Buizza R, Balmaseda MA, Balsamo G, Bidlot J-R, Bonet A, Fuentes M, Hofstadler A, Molteni F, Palmer TN (2008) The new VarEPS-monthly forecasting system: a first step towards seamless prediction. Q J R Meteorol Soc 134:1789–1799CrossRefGoogle Scholar
  63. Wang G, Alves O, Smith N (2005) BAM3.0 tropical surface flux simulation and its impact on SST drift in a coupled model. BMRC Research Report No. 107. Bureau of Meteorology, MelbourneGoogle Scholar
  64. Wang G, Alves O, Hudson D, Hendon HH, Liu G, Tseitkin F (2008) SST skill assessment from the new POAMA-1.5 System. BMRC Research Letters No. 8:2–6. Bureau of Meteorology, MelbourneGoogle Scholar
  65. Watterson IG (2000) Southern midlatitude zonal wind vacillation and its interaction with the ocean in GCM simulations. J Clim 13:562–578CrossRefGoogle Scholar
  66. Watterson IG (2001) Zonal wind vacillation and its interaction with the ocean: implications for interannual variability and predictability. J Geophys Res 106:23965–23975CrossRefGoogle Scholar
  67. Yang X, Chang EKM (2007) Eddy-zonal flow feedback in the southern hemisphere winter and summer. J Atmos Sci 64:3091–3112CrossRefGoogle Scholar
  68. Yang X-Y, Wang D, Wang J, Huang RX (2007) Connection between the decadal variability in the Southern Ocean circulation and the southern annular mode. Geophys Res Lett 34:L16604. doi:10.1029/2007GL030526 CrossRefGoogle Scholar
  69. Zhao M, Hendon HH (2009) Representation and prediction of the Indian Ocean dipole in the POAMA seasonal forecast model. Q J R Meteorol Soc 135:337–352CrossRefGoogle Scholar
  70. Zhong A, Alves O, Hendon H, Rikus L (2006) On aspects of the mean climatology and tropical interannual variability in the BMRC Atmospheric Model (BAM 3.0). BMRC Research Report No. 121. Bureau of Meteorology, MelbourneGoogle Scholar
  71. Zhou T, Yu R (2004) Sea-surface temperature induced variability of the southern annular mode in an atmospheric general circulation model. Geophys Res Lett 31:L24206. doi:10.1029/2004GL021473 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Andrew G. Marshall
    • 1
  • Debra Hudson
    • 2
  • Matthew C. Wheeler
    • 2
  • Harry H. Hendon
    • 2
  • Oscar Alves
    • 2
  1. 1.Centre for Australian Weather and Climate ResearchHobartAustralia
  2. 2.Centre for Australian Weather and Climate ResearchMelbourneAustralia

Personalised recommendations