Climate Dynamics

, Volume 39, Issue 3–4, pp 827–840 | Cite as

Regime dependent changes in global precipitation

Article

Abstract

Assessment of changes in precipitation (P) as a function of percentiles of surface temperature (T) and 500 hPa vertical velocity (ω) are presented, considering present-day simulations and observational estimates from the Global Precipitation Climatology Project (GPCP) combined with the European Centre for Medium-range Weather Forecasts Interim reanalysis (ERA Interim). There is a tendency for models to overestimate P in the warm, subsiding regimes compared to GPCP, in some cases by more than 100%, while many models underestimate P in the moderate temperature regimes. Considering climate change projections between 1980–1999 and 2080–2099, responses in P are characterised by dP/dT ≥ 4%/K over the coldest 10–20% of land points and over warm, ascending ocean points while P declines over the warmest, descending regimes (dP/dT ∼ − 4%/K for model ensemble means). The reduced Walker circulation limits this contrasting dP/dT response in the tropical wet and dry regimes only marginally. Around 70% of the global surface area exhibits a consistent sign for dP/dT in at least 6 out of a 7-member model ensemble when considering P composites in terms of dynamic regime.

Keywords

Precipitation Climate models Dynamical regime 

References

  1. Allan RP (2009) Examination of relationships between clear-sky longwave radiation and aspects of the atmospheric hydrological cycle in climate models, reanalyses, and observations. J Clim 22:3127–4145CrossRefGoogle Scholar
  2. Allan RP, Soden BJ, John VO, Ingram I William, Good P (2010) Current changes in tropical precipitation. Environ Res Lett 5:025205. doi:10.1088/1748-9326/5/2/025205
  3. Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232CrossRefGoogle Scholar
  4. Andrews T, Forster PM, Boucher O, Bellouin N, Jones A (2010) Precipitation, radiative forcing and global temperature change. Geophys Res Lett 37:L14701. doi:10.1029/2010GL043991 CrossRefGoogle Scholar
  5. Arkin PA, Smith TM, Sapiano MRP, Janowiak J (2010) The observed sensitivity of the global hydrological cycle to changes in surface temperature. Environ Res Lett 5:035201. doi:10.1088/1748-9326/5/3/035201 CrossRefGoogle Scholar
  6. Bony S, Dufresne JL, Treut HL, Morcrette JJ, Senior C (2004) On dynamic and thermodynamic components of cloud changes. Clim Dyn 22:71–86CrossRefGoogle Scholar
  7. Chou C, Tu J, Tan P (2007) Asymmetry of tropical precipitation change under global warming. Geophys Res Lett 34:L17708. doi:10.1029/2007GL030327 CrossRefGoogle Scholar
  8. Chou C, Neelin JD, abd J-Y Tu CAC (2009) Evaluating the “rich get richer” mechanism in tropical precipitation change under global warming. J Clim 22:1982–2005Google Scholar
  9. Collins WD et al (2006) The community climate system model version 3 (CCSM3). J Clim 19:2122–2143Google Scholar
  10. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hlm EV, Isaksen L, Kllberg P, Khler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thpaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828 CrossRefGoogle Scholar
  11. Emori S, Brown SJ (2005) Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys Res Lett 32:L17706. doi:10.1029/2005GL023272 CrossRefGoogle Scholar
  12. Hasumi H, Emori S (2004) K-1 coupled model (MIROC) description. Tech. Rep. K-1 Tech. Rep. 1, Center for Climate System Research, University of TokyoGoogle Scholar
  13. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699CrossRefGoogle Scholar
  14. Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett 36:L17808. doi:10.1029/2009GL040,000
  15. Johns TC, Durman CF, Banks HT, Roberts MJ, Mclaren AJ, Ridley JK, Senior CA, Williams KD, Jones A, Rickard GJ, Cusack S, Ingram WJ, Crucifix M, Sexton DMH, Joshi MM, Dong BW, Spencer H, Hill RSR, Gregory JM, Keen AB, Pardaens AK, Lowe JA, Bodas-Salcedo A, Stark S, Searl Y (2006) The new Hadley Centre Climate Model (HadGEM1): Evaluation of coupled simulations. J Climate 19:1327–1353CrossRefGoogle Scholar
  16. Lambert FH, Webb MJ (2008) Dependency of global mean precipitation on surface temperature. Geophys Res Lett 35:L16706. doi:10.1029/2008GL034838 CrossRefGoogle Scholar
  17. Marti O, Braconnot P, Bellier J, Benshila R, Bony S, Brockmann P, Cadulle P, Caubel A, Denvil S, Dufresne J, Fairhead L, Filiberti M, Fichefet T, Friedlingstein P, Grandpeix J, Hourdin F, Krinner G, Levy C, Musat I, Talandier C, The IPSL global climate modeling group (2005) The new IPSL climate system model: IPSL-CM4. Tech Rep Tech Rep no. 26, Institut Pierre Simon Laplace des Sciences de l’Environment Global, IPSL, Case 101, Paris, FranceGoogle Scholar
  18. Meehl G, Stocker T, Collins W, Friedlingstein P, Gaye A, Gregory J, Kitoh A, Knutti R, Murphy J, Noda A, Raper S, Watterson I, Weaver A, Zhao ZC (2007a) Global climate projections, Cambridge University Press, Cambridge, pp 747–845. Climate Change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate changeGoogle Scholar
  19. Meehl GA, Covey C, Delworth T, Latif M, McAvaneye B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Amer Met Soc 88:1383–1394CrossRefGoogle Scholar
  20. Mitchell J, Wilson CA, Cunnington WM (1987) On CO2 climate sensitivity and model dependence of results. Q J R Meteorol Soc 113:293–322CrossRefGoogle Scholar
  21. O’Gorman PA, Muller CJ (2010) How closely do changes in surface and column water vapor follow Clausius-Clapeyron scaling in climate change simulations. Environ Res Lett 5:025207. doi:10.1088/1748-9326/5/2/025207 CrossRefGoogle Scholar
  22. O’Gorman PA, Schneider T (2009) The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc Nat Acad Sci 106:14,773–14,777CrossRefGoogle Scholar
  23. Pal JS, Giorgi F, Bi X (2004) Consistency of recent european summer precipitation trends and extremes with future regional climate projections. Geophys Res Lett 31(13):L13202. doi:10.1029/2004GL019836 CrossRefGoogle Scholar
  24. Pall P, Allen MR, Stone DA (2007) Testing the clauius clapeyron constraint on changes in extreme precipitation under CO2 warming. Clim Dyn 28:351–363CrossRefGoogle Scholar
  25. Salas-Mélia D, Chauvin F, Déqué M, Douville H, Gueremy J, Marquet P, Planton S, Royer J, Tyteca S (2005) Description and validation of the CNRM-CM3 global coupled model. Technical Report CNRM working note 103, Météo-France, 42 Avenue Gaspard Coriolis, 31057 Toulouse Cedex, FranceGoogle Scholar
  26. Schmidt GA, co-oauthors (2006) Present-day atmospheric simulations using GISS ModelE: comparison to in situ, satellite, and reanalysis data. J Clim 19:153–192Google Scholar
  27. Sohn BJ, Park SC (2010) Strengthened tropical circulations in past three decades inferred from water vapor transport. J Geophys Res 115:D15112. doi:10.1029/2009JD013713 CrossRefGoogle Scholar
  28. Stephens GL, Ellis TD (2008) Controls of global-mean precipitation increases in global warming GCM experiments. J Clim 21:6141–6155CrossRefGoogle Scholar
  29. Sugiyama M, Shiogama H, Emori S (2010) Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proc Nat Acad Sci 107:571–575Google Scholar
  30. Trenberth KE, Shea DJ (2005) Relationships between precipitation and surface temperature. Geophys Res Lett 32(14):L14703. doi:10.1029/2005GL022760 CrossRefGoogle Scholar
  31. Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Amer Met Soc 84:1205–1217CrossRefGoogle Scholar
  32. Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical pacific atmospheric circulation due to anthropogenic forcing. Nature 441:73–76CrossRefGoogle Scholar
  33. Volodin EM, Diansky NA (2004) El Niño reproduction in coupled general circulation model. Russ Meteor Hydrol 12:5–14Google Scholar
  34. Willett KM, Jones PD, Gillett NP, Thorne PW (2008) Recent changes in surface humidity: development of the HadCRUH dataset. J Clim 21(20):5364–5383CrossRefGoogle Scholar
  35. Williams J, Ringer MA (2010) Precipitation changes within dynamical regimes in a perturbed climate. Environ Res Lett 5:035202. doi:10.1088/1748-9326/5/3/035202 CrossRefGoogle Scholar
  36. Xie SP, Deser C, Vecchi G, Ma J, Teng H, Wittenberg A (2010) Global warming pattern formation: Sea surface temperature and rainfall. J Clim 23:966–986CrossRefGoogle Scholar
  37. Yu Y, Zhang Z, Guo Y (2004) Global coupled ocean-atmosphere general circulation models in LASG/IAP. Adv Atmos Sci 21:444–455CrossRefGoogle Scholar
  38. Yukimoto S, Noda A (2002) Improvements in the Meteorological Research Institute Global Ocean-Atmosphere Coupled GCM (MRI-CGCM2) and its climate sensitivity. Tech Rep Tech Rep 10, NIES, JapanGoogle Scholar
  39. Zahn M, Allan RP (2011) Changes in water vapor transports of the ascending branch of the tropical circulation. J Geophys Res (submitted)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Meteorology, National Centre for Atmospheric Science (NCAS)—ClimateUniversity of ReadingReadingUK

Personalised recommendations