Advertisement

Climate Dynamics

, Volume 38, Issue 1–2, pp 301–321 | Cite as

Comparison of tropical cyclogenesis indices on seasonal to interannual timescales

  • Christophe E. Menkes
  • Matthieu Lengaigne
  • Patrick Marchesiello
  • Nicolas C. Jourdain
  • Emmanuel M. Vincent
  • Jérôme Lefèvre
  • Fabrice Chauvin
  • Jean-Francois Royer
Article

Abstract

This paper evaluates the performances of four cyclogenesis indices against observed tropical cyclone genesis on a global scale over the period 1979–2001. These indices are: the Genesis Potential Index; the Yearly Genesis Parameter; the Modified Yearly Convective Genesis Potential Index; and the Tippett et al. Index (J Clim, 2011), hereafter referred to as TCS. Choosing ERA40, NCEP2, NCEP or JRA25 reanalysis to calculate these indices can yield regional differences but overall does not change the main conclusions arising from this study. By contrast, differences between indices are large and vary depending on the regions and on the timescales considered. All indices except the TCS show an equatorward bias in mean cyclogenesis, especially in the northern hemisphere where this bias can reach 5°. Mean simulated genesis numbers for all indices exhibit large regional discrepancies, which can commonly reach up to ±50%. For the seasonal timescales on which the indices are historically fitted, performances also vary widely in terms of amplitude although in general they all reproduce the cyclogenesis seasonality adequately. At the seasonal scale, the TCS seems to be the best fitted index overall. The most striking feature at interannual scales is the inability of all indices to reproduce the observed cyclogenesis amplitude. The indices also lack the ability to reproduce the general interannual phase variability, but they do, however, acceptably reproduce the phase variability linked to El Niño/Southern Oscillation (ENSO)—a major driver of tropical cyclones interannual variations. In terms of cyclogenesis mechanisms that can be inferred from the analysis of the index terms, there are wide variations from one index to another at seasonal and interannual timescales and caution is advised when using these terms from one index only. They do, however, show a very good coherence at ENSO scale thus inspiring confidence in the mechanism interpretations that can be obtained by the use of any index. Finally, part of the gap between the observed and simulated cyclogenesis amplitudes may be attributable to stochastic processes, which cannot be inferred from environmental indices that only represent a potential for cyclogenesis.

Keywords

Cyclogenesis indices Atmospheric reanalyses ENSO Cyclone stochasticity 

Notes

Acknowledgments

The authors wish to thank K. Emanuel for sharing the cyclone netcdf data as well as the GPI routines. We would like to thank our two anonymous reviewers for their fruitful comments. Thanks also goes to Michael Tippett for insightful discussions and for sharing his results prior to publication. This work was supported by the Institut de Recherche pour le Développement (IRD) and ANR grant ANR-VULN-002-01. The JRA25 datasets are from the JRA-25 long-term reanalysis cooperative research project carried out by the JMA and the CRIEPI.

References

  1. Bruyere C, Holland G, Done J, Suzuki-Parker A (2010) Genesis potential index for tropical cyclones in the nested regional climate model (NRCM) experiments. In: Proceedings of 29th conference on hurricanes and tropical meteorology, Tucson, Arizona, 10–14 May 2010, 7A.2Google Scholar
  2. Camargo SJ, Sobel AH (2007) Workshop on tropical cyclones and climate. Bull Metorol Soc 88(3):389–391. doi: 10.1175/BAMS-88-3-389 Google Scholar
  3. Camargo SJ, Emanuel KA, Sobel AH (2007a) Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J Clim 20:4819–4834CrossRefGoogle Scholar
  4. Camargo SJ, Sobel AH, Barnston AG, Emanuel KA (2007b) Tropical cyclone genesis potential index in climate models. Tellus 59A:428–443Google Scholar
  5. Camargo SJ, Wheeler MC, Sobel AH (2009) Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J Atmos Sci 66:3061–3074CrossRefGoogle Scholar
  6. Caron LP, Jones CG (2008) Analysing present, past and future tropical cyclone activity as inferred from an ensemble of coupled global climate models. Tellus 60A:80–96Google Scholar
  7. Chand SS, Walsh KJE (2009) Tropical cyclone activity in the Fiji region: spatial patterns and relationship to large-scale circulation. J Clim 22:3877–3893CrossRefGoogle Scholar
  8. Chauvin F, Royer J-F (2011) Role of the SST anomaly structures in response of cyclogenesis to global warming. In: Elsner JB et al (eds) Hurricanes and climate change, vol 2. Springer Science, Berlin. doi: 10.1007/978-90-481-9510-7_3 Google Scholar
  9. Chauvin F, Royer J-F, Déqué M (2006) Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution. Clim Dyn 27:377–399CrossRefGoogle Scholar
  10. Chu PS (2004) ENSO and tropical cyclone activity. In: Murnane RJ, Liu K-B (eds) Hurricanes and typhoons, past, present and future. Columbia University Press, Columbia, pp 297–332Google Scholar
  11. Collins M, An S-I, Cai W, Ganachaud A, Guilyardi E, Jin F-F, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A (2010) The impact of global warming on the tropical Pacific and El Niño. Nat Geosci 3:391–397. doi: 10.1038/ngeo868 CrossRefGoogle Scholar
  12. Emanuel K (2010) Tropical cyclone activity downscaled from NOAA-CIRES reanalysis, 1908–1958. J Adv Model Earth Syst 2:1–12. doi: 10.3894/JAMES.2010.2.1 CrossRefGoogle Scholar
  13. Emanuel KA, Nolan DS (2004) Tropical cyclone activity and global climate. In: Proceedings of 26th conference on hurricanes and tropical meteorology. American Meteorological Society, Miami, FL, pp 240–241Google Scholar
  14. Gray WM (1968) Global view of the origin of tropical disturbances and storms. Mon Weather Rev 96:669–700CrossRefGoogle Scholar
  15. Gray WM (1975) Tropical cyclone genesis. Colorado State University, ColoradoGoogle Scholar
  16. Gray WM (1979). Hurricanes: their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans. Ed R Meteor Soc 155–218Google Scholar
  17. Gray WM (1998) The formation of tropical cyclones. Meteorol Atmos Phys 67:37–69. doi: 10.1007/BF01277501 CrossRefGoogle Scholar
  18. Grotjahn R (2008) A comparison of selected fields in NCEP/DOE AMIP-II and ECMWF ERA-40 reanalyses. Dyn Ocean Atmos 44:108–142CrossRefGoogle Scholar
  19. Jourdain NC, Marchesiello P, Menkes CE, Lefèvre J, Vincent EM, Lengaigne M and Chauvin F (2010) Mesoscale simulation of tropical cyclones in the South Pacific: climatology and interannual variability. J Clim. doi:  10.1175/2010JCLI3559.1
  20. Kalnay EC et al (1996) The NCEP/NCAR reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  21. Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteor Soc 83:1631–1643CrossRefGoogle Scholar
  22. Kim J-H, Brown S, McDonald RE (2010) Future changes in tropical cyclone genesis in fully dynamic ocean- and mixed layer ocean-coupled climate models: a low-resolution model study. Clim Dyn. doi: 10.1007/s00382-010-0855-6
  23. Kim HM, Webster PJ, Curry JA (2009) Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science 325:77–80. doi: 10.1126/science.1174062 CrossRefGoogle Scholar
  24. Landsea CW (2000) El Niño–Southern oscillation and the seasonal predictability of tropical cyclones. In: Díaz HF, Markgraf V (eds) El Niño: impacts of multiscale variability on natural ecosystems and society. Cambridge University Press, Cambridge, pp 149–181Google Scholar
  25. Lyon B, Camargo SJ (2009) The seasonally-varying influence of ENSO on rainfall and tropical cyclone activity in the Philippines. Clim Dyn 32:125–141. doi: 10.1007/s00382-008-0380-z Google Scholar
  26. McDonald RE, Bleaken DG, Cresswell DR, Pope VD, Senior CA (2005) Tropical storms: representation and diagnosis in climate models and the impacts of climate change. Clim Dyn 25:19–36CrossRefGoogle Scholar
  27. Murakami H, Wang B (2010) Future change of North Atlantic tropical cyclone tracks: projection by a 20-km-mesh global atmospheric model. J Clim 23:2699–2721CrossRefGoogle Scholar
  28. Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R (2007) The JRA-25 reanalysis. J Meteorol Soc Jpn 85:369–432. doi: 10.2151/jmsj.85.369 CrossRefGoogle Scholar
  29. Ramsay HA, Leslie LM, Lamb PJ, Richman MB, Leplastrier M (2008) Interannual variability of tropical cyclones in the Australian region: role of large-scale environment. J Clim 21:1083–1103. doi: 10.1175/2007JCLI1970.1 CrossRefGoogle Scholar
  30. Rodgers KB, Aumont O, Menkès C, Gorgues T (2008) Decadal variations in equatorial Pacific ecosystems and ferrocline/pycnocline decoupling. Glob Biogeochem Cycles 22(2):17–32Google Scholar
  31. Royer J-F, Chauvin F (2009) Response of tropical cyclogenesis to global warming in an IPCC AR-4 scenario assessed by a modified yearly genesis parameter. In: Elsner JB, Jagger TH (eds) Hurricanes and climate change. Springer, Berlin, pp 213–234Google Scholar
  32. Royer J-F, Chauvin F, Timbal B, Araspin P, Grimal D (1998) A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Clim Chang 38:307–343CrossRefGoogle Scholar
  33. Simpson J, Ritchie E, Holland G, Halverson J, Stewart S (1997) Mesoscale interactions in tropical cyclone genesis. Mon Weather Rev 125(10):2643–2661CrossRefGoogle Scholar
  34. Tippett MK, Camargo SJ, Sobel A (2011) A poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J clim. doi: 10.1175/2010JCLI3811.1, accepted
  35. Trenberth KE (1997) The Definition of El Niño. Bull Am Meteorol Soc 78:2771–2777CrossRefGoogle Scholar
  36. Tsutsui JI, Kasahara A (1996) Simulated tropical cyclones using the National center for atmospheric research community climate model. J Geophys Res Atmos 101:15013–15032CrossRefGoogle Scholar
  37. Uppala SM, Co-authors (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612 Part B):2961–3012CrossRefGoogle Scholar
  38. Vincent E, Lengaigne M, Menkes CE, Jourdain NC, Marchesiello P, Madec G (2009) Interannual variability of the South Pacific convergence zone and implications for tropical cyclone genesis. Clim Dyn. doi: 10.1007/s00382-009-0716-3
  39. Watterson IG, Evans JL, Ryan BF (1995) Seasonal and interannual variability of tropical cyclogenesis: diagnostics from large-scale fields. J Clim 8:3052–3066CrossRefGoogle Scholar
  40. Yokoi S, Takayabu YN, Chan JCL (2009) Tropical cyclone genesis frequency over the western North Pacific simulated in medium-resolution coupled general circulation models. Clim Dyn 33:665–683. doi: 10.1007/s00382-009-0593-9 CrossRefGoogle Scholar
  41. Zhao M, Held IM, Lin S-J, Vecchi GA (2009) Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50 km resolution GCM. J Clim. doi: 10.1175/2009JCLI3049.1

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Christophe E. Menkes
    • 1
    • 3
    • 6
  • Matthieu Lengaigne
    • 1
    • 2
  • Patrick Marchesiello
    • 4
  • Nicolas C. Jourdain
    • 3
  • Emmanuel M. Vincent
    • 1
  • Jérôme Lefèvre
    • 3
    • 4
  • Fabrice Chauvin
    • 5
  • Jean-Francois Royer
    • 5
  1. 1.IRD, Laboratoire d’Océanographie et du Climat: Expérimentation et Approches Numériques (LOCEAN)IRD/UPMC/CNRS/MNHNParisFrance
  2. 2.IRDNational Institute of OceanographyGoaIndia
  3. 3.IRDNouméa CedexNew Caledonia
  4. 4.IRDLaboratoire d’Etudes en Géophysique et Océanographie Spatiale (LEGOS)ToulouseFrance
  5. 5.Météo-France, CNRM/GAME (Météo-France/CNRS)Toulouse Cedex 01France
  6. 6.LOCEAN, IRD/UPMC/MNHN/CNRSInstitut de Recherche Pour le DéveloppementNouméa CedexNew Caledonia

Personalised recommendations