Advertisement

Climate Dynamics

, Volume 37, Issue 9–10, pp 2045–2065 | Cite as

ENSO nonlinearity in a warming climate

  • J. Boucharel
  • B. Dewitte
  • Y. du Penhoat
  • B. Garel
  • S.-W. Yeh
  • J.-S. Kug
Article

Abstract

The El Niño Southern Oscillation (ENSO) is known as the strongest natural inter-annual climate signal, having widespread consequences on the global weather, climate, ecology and even on societies. Understanding ENSO variations in a changing climate is therefore of primordial interest to both the climate community and policy makers. In this study, we focus on the change in ENSO nonlinearity due to climate change. We first analysed high statistical moments of observed Sea Surface Temperatures (SST) timeseries of the tropical Pacific based on the measurement of the tails of their Probability Density Function (PDF). This allows defining relevant metrics for the change in nonlinearity observed over the last century. Based on these metrics, a zonal “see-saw” (oscillation) in nonlinearity patterns is highlighted that is associated with the change in El Niño characteristics observed in recent years. Taking advantage of the IPCC database and the different projection scenarios, it is showed that changes in El Niño statistics (or “flavour”) from a present-day climate to a warmer climate are associated with a significant change in nonlinearity patterns. In particular, in the twentieth century climate, the “conventional” eastern Pacific El Niño relates more to changes in nonlinearity than to changes in mean state whereas the central Pacific El Niño (or Modoki El Niño) is more sensitive to changes in mean state than to changes in nonlinearity. An opposite behaviour is found in a warmer climate, namely the decreasing nonlinearity in the eastern Pacific tends to make El Niño less frequent but more sensitive to mean state, whereas the increasing nonlinearity in the west tends to trigger Central Pacific El Niño more frequently. This suggests that the change in ENSO statistics due to climate change might result from changes in the zonal contrast of nonlinearity characteristics across the tropical Pacific.

Keywords

ENSO Nonlinearity Global warming, El Niño Modoki Statistics Heavy-tails law 

Notes

Acknowledgments

This work has been supported by the Conseil Régional Midi-Pyrénées under contract No. 06001715. The authors would like to thank Pedro DiNezio for interesting discussions during the AGU of the America conference in Iguazu (Brazil) and two anonymous reviewers for their constructive comments. S.-W. Yeh has been supported from the Korea Meteorological Administration Research and Development Program under Grant RACS_2010-2006. J.-S. Kug is supported by Korea Meteorological Administration Research and Development Program under Grant CATER_2010-2007.

References

  1. AchutaRao K, Sperber KR (2002) Simulation of the El Niño Southern Oscillation: results from the Coupled Model Intercomparison Project. Clim Dyn 19:191–209CrossRefGoogle Scholar
  2. AchutaRao K, Sperber K (2006) ENSO simulations in coupled ocean-atmosphere models: are the current models better? Clim Dyn 27:1–15CrossRefGoogle Scholar
  3. An S-I (2004) Interdecadal changes in the El Niño-La Niña asymmetry. Geophys Res Lett 31:L23210. doi: 101029/2004GL021299 CrossRefGoogle Scholar
  4. An S-I (2009) A review of interdecadal changes in the nonlinearity of the El Nino-Southern Oscillation. Theor Appl Climatol 97:29–40CrossRefGoogle Scholar
  5. An S-I, Jin F–F (2001) Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J Clim 14:3421–3432CrossRefGoogle Scholar
  6. An S-I, Jin F–F (2004) Nonlinearity and asymmetry of ENSO. J Clim 17:2399–2412CrossRefGoogle Scholar
  7. An S-I, Wang B (2000) Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J Clim 13:2044–2055CrossRefGoogle Scholar
  8. An S-I, Ham Y-G, Kug J-S, Jin F–F, Kang I-S (2005) El Niño-La Niña asymmetry in the coupled model Intercomparison project simulations. J Clim 18:2617–2627CrossRefGoogle Scholar
  9. Ashok K, Yamagata T (2009) The El Niño with a difference. Nature 461:481–484CrossRefGoogle Scholar
  10. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007CrossRefGoogle Scholar
  11. Belmadani A, Dewitte B, An S-I (2010) ENSO feedbacks and associated time scales of variability in a multi-model ensemble. J Clim 23:3181–3204CrossRefGoogle Scholar
  12. Boucharel J, Dewitte B, Garel B, du Penhoat Y (2009) ENSO’s non-stationary and non-Gaussian character: the role of climate shifts. Nonlin Proc Geophys 16:453–473CrossRefGoogle Scholar
  13. Box G, Jenkins G (1970) Time series analysis: forecasting and control. Holden-Day, San FranciscoGoogle Scholar
  14. Braconnot P et al (2007) Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—part 1: experiments and large-scale features. Clim Past 3(2):261–277CrossRefGoogle Scholar
  15. Brown J, Collins M, Tudhope AW, Toniazzo T (2007) Modelling mid-Holocene tropical climate and ENSO variability: towards constraining predictions of future change with palaeo-data. Clim Dyn. doi: 10.1007/s00382-007-0270-9
  16. Burgers G, Stephenson DB (1999) The normality of El Niño. Geophys Res Lett 26(8):1027–1039CrossRefGoogle Scholar
  17. Cherchi A, Masina S, Navarra A (2008) Impact of extreme CO2 levels on tropical climate: a CGCM study. Clim Dynam 31:743–758CrossRefGoogle Scholar
  18. Choi J, An S-I, Dewitte B, Hsieh WW (2009) Interactive feedback between the tropical Pacific decadal oscillation and ENSO in a coupled general circulation model. J Clim 22:6597–6611CrossRefGoogle Scholar
  19. Clement AC, Seager R, Cane MA (2000) Suppression of El Niño during the mid-Holocene by changes in the Earth’s orbit. Paleoceanography 15:731–737CrossRefGoogle Scholar
  20. Collins M et al (2005) El Niño- or La Niña-like climate change? Clim Dyn 24:89–104CrossRefGoogle Scholar
  21. d’Estampes L (2003) Traitement statistique des processus alpha stables. Mesure de dépendances et identification des AR stables. Thèse de l’Institut National Polytechnique de Toulouse, 125 ppGoogle Scholar
  22. Davey M et al (2002) STOIC: a study of coupled model climatology and variability in tropical ocean regions. Clim Dynam 18:403–420CrossRefGoogle Scholar
  23. Dewitte B, Yeh S-W, Moon B-K, Cibot C, Terray L (2007) Rectification of the ENSO variability by interdecadal changes in the equatorial background mean state in a CGCM simulation. J Clim 20(10):2002–2021CrossRefGoogle Scholar
  24. DiNezio PN, Clement AC, Vecchi GA, Soden BJ, Kirtman BP, Lee S-K (2009) Climate response of the equatorial Pacific to global warming. J Clim 22:4873–4892CrossRefGoogle Scholar
  25. DiNezio PN, Clement AC, Vecchi GA (2010) Reconciling theory, models, and observations of Tropical Pacific climate change. Eos Trans Am Geophys Union (accepted)Google Scholar
  26. Efron B (1982) The jackknife, the bootstrap, and other resampling plans. Society for Industrial and Applied Mathematics, CBMS-NSF Monographs, vol 38, pp 1–92Google Scholar
  27. Flügel M, Chang P, Penland C (2004) The role of stochastic forcing in modulating ENSO predictability. J Clim 17:3125–3140CrossRefGoogle Scholar
  28. Gnedenko VB, Kolmogorov AN (1954) Limit distributions for sums of random variables. Addison-WesleyGoogle Scholar
  29. Guilderson TP, Schrag DP (1998) Abrupt shift in subsurface temperatures in the tropical pacific associated with changes in El Niño. Science 281(5374):240–243CrossRefGoogle Scholar
  30. Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, van Oldenborgh GJ, Stockdale T (2009) Understanding El Niño in Ocean–Atmosphere general circulation models: progress and challenges. Bull Am Meteor Soc 90:325–340CrossRefGoogle Scholar
  31. Hannachi A, Stephenson DB, Sperber KR (2003) Probability-based methods for quantifying nonlinearity in the ENSO. Clim Dyn. doi: 10.1007/s00382-002-0263-7
  32. Jin F–F, Neelin DJ, Ghil M (1994) El Niño on the devil’s staircase: annual subharmonic steps to chaos. Science 264:70–72CrossRefGoogle Scholar
  33. Jin F–F, An S-I, Timmermann A, Zhang X (2003) Strong El Nino events and nonlinear dynamical heating. Geophys Res Lett 30. doi: 10.1029/2002GL016356
  34. Kao H-Y, Yu J-Y (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632CrossRefGoogle Scholar
  35. Kaplan A, Cane M, Kushnir Y, Clement A, Blumenthal M, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103:18567–18589CrossRefGoogle Scholar
  36. Karnauskas KB, Seager R, Kaplan A, Kushnir Y, Cane MA (2009) Observed strengthening of the zonal sea surface temperature gradient across the equatorial Pacific Ocean. J Clim 22:4316–4432CrossRefGoogle Scholar
  37. Koutrouvelis IA (1980) Regression-type estimation of the parameters of stable laws. J Am Stat Assoc 75:N 372Google Scholar
  38. Kug J-S, Jin F–F, An S-I (2009) Two types of El Niño events: cold tongue El Niño and Warm Pool El Niño. J Clim 22:1499–1515CrossRefGoogle Scholar
  39. Kug J-S, Choi J, An S-I, Jin F–F, Wittenberg AT (2010) Warm pool and cold tongue El Nino events as simulated by the GFDL 2.1 coupled GCM. J Clim 23:1226–1239CrossRefGoogle Scholar
  40. Larkin NK, Harrison DE (2005a) On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys Res Lett 32:L13705. doi: 10.1029/2005GL022738
  41. Larkin NK, Harrison DE (2005b) Global seasonal temperature and precipitation anomalies during El Nino autumn and winter. Geophys Res Lett 32:L16705. doi: 10.1029/2005GL022860 CrossRefGoogle Scholar
  42. Latif M, Keenlyside NS (2008) El Niño/Southern Oscillation response to global warming. Proc Natl Acad Sci 106:20578–20583CrossRefGoogle Scholar
  43. Latif M et al (2001) ENSIP: the El Niño simulation intercomparison project. Clim Dyn 18:255–276CrossRefGoogle Scholar
  44. Lévy P (1924) Théorie des erreurs: Les lois de Gauss et les lois exponentielles. Bull Soc Math France 52:49–95Google Scholar
  45. Lin J-L (2007) Interdecadal variability of ENSO in 21 IPCC AR4 coupled CGCMs. Geophys Res Lett 34:L12702CrossRefGoogle Scholar
  46. Liu Z, Vavrus S, He F, Wen N, Zhong Y (2005) Rethinking tropical ocean response to global warming: the enhanced equatorial warming. J Clim 18:4684–4700CrossRefGoogle Scholar
  47. Mandelbrot B (1963) The variation of certain speculative prices. J Bus 36:394–419CrossRefGoogle Scholar
  48. Maronna R, Yohai VJ (1978) A bivariate test for the detection of a systematic change in mean. J Am Stat Assoc 73:N363CrossRefGoogle Scholar
  49. McGregor HV, Gagan MK (2004) Western Pacific coral δ 18O records of anomalous Holocene variability in the El Niño-Southern Oscillation. Geophys Res Lett L11204. doi: 10.1029/2004GL019972
  50. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteor Soc 88:1383–1394CrossRefGoogle Scholar
  51. Monahan AH, Dai A (2004) The spatial and temporal structure of ENSO nonlinearity. J Clim 17:3026–3036CrossRefGoogle Scholar
  52. Moon B-K, Yeh S-W, Dewitte B, Jhun J-G, Kang I-S, Kirtman BP (2004) Vertical structure variability in the equatorial Pacific before and after the Pacific climate shift of the 1970s. Geophys Res Lett 31:L03203. doi: 10.1029/2003GL018829
  53. Philip SY, van Oldenborgh GJ (2009) Significant atmospheric nonlinearities in the ENSO cycle. J Clim 22(14):4014–4028CrossRefGoogle Scholar
  54. Picaut J, Ioualalen M, Menkes C, Delcroix T, McPhaden MJ (1996) Mechanism of the Zonal displacements of the Pacific warm pool: implications for ENSO. Science 274:1486–1489CrossRefGoogle Scholar
  55. Randall DA et al (2007) Climate models and their evaluation. In: S Solomon et al. (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 589–662Google Scholar
  56. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of SST, sea ice and night marine air temperature since the late 19th century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 Google Scholar
  57. Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? Bull Am Meteor Soc 89:303–311CrossRefGoogle Scholar
  58. Rodgers KB, Friederichs P, Latif M (2004) Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J Clim 17:3761–3774CrossRefGoogle Scholar
  59. Schopf PS, Burgman RJ (2006) A simple mechanism for ENSO residuals and asymmetry. J Clim 19:3167–3179CrossRefGoogle Scholar
  60. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296CrossRefGoogle Scholar
  61. Timmermann A (1999) Detecting the nonstationary response of ENSO to greenhouse Warming. J Atmos Sci 56:2313–2325CrossRefGoogle Scholar
  62. Timmermann A, Jin F–F (2002) A nonlinear mechanism for decadal El Niño amplitude changes. Geophys Res Lett. doi: 10.1029/2001GL013369
  63. Timmermann A, Latif M, Bacher A, Oberhuber J, Roeckner E (1999) Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398:694–696CrossRefGoogle Scholar
  64. Timmermann A, Jin F–F, Abshagen J (2003) A nonlinear theory of El Niño bursting. J Atmos Sci 60:152–165CrossRefGoogle Scholar
  65. Tsonis AA (2009) Dynamical changes in the ENSO system in the last 11,000 years. Clim Dynam 33:1069–1074CrossRefGoogle Scholar
  66. Tziperman E, Stone L, Cane MA, Jarosh H (1994) El Niño chaos: overlapping of resonances between the seasonal cycle and the Pacific ocean–atmosphere oscillator. Science 264:72–74CrossRefGoogle Scholar
  67. Urban FE, Cole JE, Overpeck JT (2000) Modification of tropical Pacific variability by its mean state inferred from a 155-year coral record. Nature 407:989–993CrossRefGoogle Scholar
  68. Van Oldenborgh GJ, Philip SY, Collins M (2005) El Niño in a changing climate: a multi model study. Ocean Sci 1:81–95CrossRefGoogle Scholar
  69. Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim v20(17):4316–4340CrossRefGoogle Scholar
  70. Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature v.441. doi: 10.1038/nature04744
  71. Weng H, Ashok K, Behera SK, Rao A, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29. doi: 10.1007/s00382-007-0234-0
  72. White GH (1980) Skewness, kurtosis and extreme values of Northern Hemisphere geopotential heights. Mon Weather Rev 108:1446–1455CrossRefGoogle Scholar
  73. Yeh S-W, Kirtman BP (2007) ENSO amplitude changes due to climate change projections in different coupled models. J Clim 20:203–217CrossRefGoogle Scholar
  74. Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman BP, Jin F–F (2009) El Niño in a changing climate. Nature 461:511–514CrossRefGoogle Scholar
  75. Yeh S-W, Dewitte B, Yim B-Y, Noh Y (2010) Role of the upper ocean structure in the response of ENSO-like SST variability to global warming. Clim Dyn (revised)Google Scholar
  76. Zebiak SE, Cane MA (1987) A model of El Niño Southern Oscillation. Mon Weather Rev 115:2262–2278CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • J. Boucharel
    • 1
    • 2
  • B. Dewitte
    • 1
    • 3
  • Y. du Penhoat
    • 1
    • 3
  • B. Garel
    • 4
  • S.-W. Yeh
    • 5
  • J.-S. Kug
    • 6
  1. 1.Université de Toulouse; UPS (OMP-PCA), LEGOSToulouseFrance
  2. 2.School of Ocean and Earth Science and Technology, Department of MeteorologyUniversity of Hawai’i at ManoaHonoluluUSA
  3. 3.IRD, LEGOSToulouseFrance
  4. 4.Institut de Mathématiques de Toulouse (UPS)Université de Toulouse, INP-ENSEEIHTToulouseFrance
  5. 5.Department of Environmental Marine ScienceHanyang UniversityAnsanSouth Korea
  6. 6.Korea Ocean Research and Development InstituteAnsanSouth Korea

Personalised recommendations