Climate Dynamics

, Volume 39, Issue 1–2, pp 259–275 | Cite as

Abrupt millennial variability and interdecadal-interstadial oscillations in a global coupled model: sensitivity to the background climate state

  • Olivier Arzel
  • Matthew H. England
  • Alain Colin de Verdière
  • Thierry Huck


The origin and bifurcation structure of abrupt millennial-scale climate transitions under steady external solar forcing and in the absence of atmospheric synoptic variability is studied by means of a global coupled model of intermediate complexity. We show that the origin of Dansgaard-Oeschger type oscillations in the model is caused by the weaker northward oceanic heat transport in the Atlantic basin. This is in agreement with previous studies realized with much simpler models, based on highly idealized geometries and simplified physics. The existence of abrupt millennial-scale climate transitions during glacial times can therefore be interpreted as a consequence of the weakening of the negative temperature-advection feedback. This is confirmed through a series of numerical experiments designed to explore the sensitivity of the bifurcation structure of the Atlantic meridional overturning circulation to increased atmospheric CO2 levels under glacial boundary conditions. Contrasting with the cold, stadial, phases of millennial oscillations, we also show the emergence of strong interdecadal variability in the North Atlantic sector during warm interstadials. The instability driving these interdecadal-interstadial oscillations is shown to be identical to that found in ocean-only models forced by fixed surface buoyancy fluxes, that is, a large-scale baroclinic instability developing in the vicinity of the western boundary current in the North Atlantic. Comparisons with modern observations further suggest a physical mechanism similar to that driving the 30–40 years time scale associated with the Atlantic multidecadal oscillation.


Millennial and interdecadal variability paleoclimate Dansgaard-Oeschger events Atlantic meridional overturning circulation 



We are grateful to V. Masson-Delmotte for her helpful comments on the manuscript. This research was supported by the Australian Research Council. The authors are grateful to the University of Victoria for supplying us the model. All computations were done on the Linux cluster Tensor at the University of New South Wales in Sydney, Australia. Use of these computing facilities is gratefully acknowledged.


  1. Arzel O, Colin de Verdière A, England MH (2010) The role of oceanic heat transport and wind-stress forcing in abrupt millennial-scale climate transitions. J Clim 23:2233–2256CrossRefGoogle Scholar
  2. Arzel O, Colin de Verdière A, Huck T (2007) On the origin of interdecadal oscillations in a coupled ocean-atmosphere model. Tellus 59:367–383CrossRefGoogle Scholar
  3. Arzel O, Huck T, Colin de Verdière A (2006) The different nature of interdecadal variability of the thermohaline circulation under mixed and flux boundary conditions. J Phys Oceanogr 36:1703–1718CrossRefGoogle Scholar
  4. Bitz CM, Holland MM, Weaver AJ, Eby M (2001) Simulating the ice-thickness distribution in a coupled climate model. J Geophys Res 106:2441–2464CrossRefGoogle Scholar
  5. Bond G et al (1992) Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 360:245–249CrossRefGoogle Scholar
  6. Bryan K, Lewis L (1979) A water mass model of the world ocean. J Geophys Res 84:2503–2517CrossRefGoogle Scholar
  7. Capron E et al (2010) Millennial and sub-millennial scale climatic variations recorded in polar ice cores over the last glacial period. Clim Past 6:345–365CrossRefGoogle Scholar
  8. Clement AC, Peterson LC (2008) Mechanisms of abrupt climate change of the last glacial period. Rev Geophys 46, doi: 10.1029/2006RG000204
  9. Colin de Verdière A (2007) A simple model of millennial oscillations of the thermohaline circulation. J Phys Oceanogr 37:1142–1155CrossRefGoogle Scholar
  10. Colin de Verdière A, Huck T (1999) Baroclinic instability: an oceanic wavemaker for interdecadal variability. J Phys Oceanogr 29:893–910CrossRefGoogle Scholar
  11. Colin de Verdière A, te Raa L (2010) Weak oceanic heat transport as a cause of the instability of glacial climates. Clim Dyn 35:1237–1256CrossRefGoogle Scholar
  12. Dansgaard W et al (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364:218–220CrossRefGoogle Scholar
  13. Delworth TL, Zhang R, Mann ME (2007) Decadal to centennial variability of the Atlantic from observations and models. Ocean circulation: mechanisms and impacts. Geophys Monogr 173:131–148Google Scholar
  14. Eisenman I, Bitz CM, Tziperman E (2009) Rain driven by receding ice sheets as a cause of past climate change. Paleoceanograph 24, doi: 10.1029/2009PA001778
  15. Frankcombe LM, Dijkstra HA (2009) Coherent multidecadal variability in North Atlantic sea level. Geophys Res Lett, doi: 10.029/2009GL039455
  16. Frankcombe LM, Dijkstra HA, von der Heydt A (2008) Sub-surface signatures of the Atlantic Multidecadal Oscillation. Geophys Res Lett 35, doi: 10.029/2008GL034989
  17. Frankcombe LM, von der Heydt A, Dijkstra HA (2010) North Atlantic multidecadal climate variability: an investigation of dominant time scales and processes. J Clim 23:3626–3638CrossRefGoogle Scholar
  18. Gent PR, McWilliams JC (1990) Isopycanl mixing in ocean circulation models. J Phys Oceanogr 20:150–155CrossRefGoogle Scholar
  19. Greatbatch RJ, Zhang S (1995) An interdecadal oscillation in an idealized ocean basin forced by constant heat flux. J Clim 8:81–91CrossRefGoogle Scholar
  20. Griffies SM et al. (2005) Formulation of an ocean model for global climate simulations. Ocean Sci 1:45–79CrossRefGoogle Scholar
  21. Huck T, Colin de Verdière A, Weaver A (1999) Interdecadal variability of the thermohaline circulation in box-ocean models forced by fixed surface fluxes. J Phys Oceanogr 29:865–892CrossRefGoogle Scholar
  22. Huck T, Vallis G , Colin de Verdière A (2001) On the robustness of the interdecadal modes of the thermohaline circulation. J Clim 14:940–963CrossRefGoogle Scholar
  23. Kageyama M, Paul A , Roche DM, Meerbeeck CJV (2010) Modelling glacial climatic millennial-scale variability related to changes in the Atlantic meridional overturning circulation: a review. Quat Sci Rev 29:2931–2956CrossRefGoogle Scholar
  24. Kalnay E et al. (1996) The NCEP/NCAR 40 year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  25. Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288:1984–1986CrossRefGoogle Scholar
  26. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32, doi: 10.1029/2005GL024233
  27. Kucera M et al. (2005) Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans. Quat Sci Rev 24:951–998CrossRefGoogle Scholar
  28. Kushnir Y (1994) Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J Clim 7:141–157CrossRefGoogle Scholar
  29. Levitus S, Antonov JI, Boyer TP, Locarnini RA, Garcia HE, Mishonov AV (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys Res Lett 36, doi: 10.1029/2008GL037155
  30. Levitus S, Boyer T (1994) World Ocean Atlas 1994. Volume 4: Temperature. NOAA Atlas NESDIS 3. U.S. Department of Commerce, Washington, DCGoogle Scholar
  31. Levitus S, Burgett R, Boyer T (1994) World Ocean Atlas 1994. Volume 3: Salinity. NOAA Atlas NESDIS 3. U.S. Department of Commerce. Washington, DCGoogle Scholar
  32. Li C, Battisti DS, Bitz CM (2010) Can North Atlantic sea ice anomalies account for Dansgaard-Oeschger climate signals? J Clim 23:5457–5475CrossRefGoogle Scholar
  33. Lopez-Martinez C, Grimalt JO, Hoogakker B, Gruetzner J, Vautravers MJ, McCave IN (2006) Abrupt wind regimes changes in the North Atlantic ocean during the past 30,000–60,000 years. Paleoceanography 41, doi: 10.1029/2006PA001275
  34. Loulergue L et al. (2008) Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453:383–386CrossRefGoogle Scholar
  35. Loving JL, Vallis GK (2005) Mechanisms for climate variability during glacial and interglacial periods. Paleoceanography 20, doi: 10.1029/2004PA001113
  36. Mann ME, Bradley RS, Hughes MK (1998 Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787CrossRefGoogle Scholar
  37. Marotzke J (1996) In: Anderson, DLT, Willebrand J (ed) Analysis of thermohaline feedbacks, Series I Decadal climate variability: dynamics and predictability, vol 44. NATO ASI Series, pp 333–378Google Scholar
  38. Masson-Delmotte V et al. (2005) GRIP deuterium excess reveals rapid and orbital-scale changes in Greenland moisture origin Science 309:118–121CrossRefGoogle Scholar
  39. Monahan AH, Alexander J, Weaver A (2008) Stochastic models of the meridional overturning circulation: time scales and patterns of variability. Philos Trans R Soc A 366:2527–2544CrossRefGoogle Scholar
  40. Msadek R, Dixon KW, Delworth TL, Hurlin (2010) Assessing the predictability of the Atlantic meridional overturning circulation and associated fingerprints. Geophys Res Lett 37, doi: 10.1029/2010GL044517
  41. Pacanowski R (1996) MOM 2 documentation user’s guide and reference manual. Version 2.0. Geophysical Fluid Dynamics Laboratory Ocean Technical Report. NOAA, GFDLGoogle Scholar
  42. Paul A, Schulz M (2002) Holocene climate variability on centennial-to-millennial time scales: 2. internal feedbacks and external forcings as possible causes. In: Wefer G, Berger WH, Behre K-E, Jansen E (eds) Climate development and history of the North Atlantic Realm. Springer, Berlin, pp 55–73Google Scholar
  43. Peltier WR (1994) Ice age paleotopography. Science 265:195–201CrossRefGoogle Scholar
  44. Rasmussen SO et al (2006) A new Greenland ice core chronology for the last glacial termination. J Geophys Res 111, doi: 10.1029/2005JD006079
  45. Rasmussen TL, Thomsen E (2004) The role of the North Atlantic Drift in the millennial timescale glacial climate fluctuations. Palaeogeogr Palaeoclimatol Palaeoecol 210:101–116CrossRefGoogle Scholar
  46. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108, doi: 10.1029/2000JC000542
  47. Roe GH, Lindzen RS (2001) The mutual interaction between continental-scale ice sheets and atmospheric stationary waves. J Clim 14:1450–1465CrossRefGoogle Scholar
  48. Sakai K, Peltier WR (1997) Dansgaard-Oeschger oscillations in a coupled atmosphere-ocean climate model. J Clim 10:949–970CrossRefGoogle Scholar
  49. Schmittner A, Yoshimori M, Weaver AJ (2002) Instability of glacial climate in a model of the ocean-atmosphere-cryosphere system. Science 295:1489–1493CrossRefGoogle Scholar
  50. Steffensen JP et al (2008) High-resolution Greenland ice core data show abrupt climate change happens in few years. Nature 321:680–684Google Scholar
  51. Svensson A et al. (2008) A 60,000 year Greenland stratigraphic ice core chronology. Clim Past 4:47–57CrossRefGoogle Scholar
  52. te Raa LA, Dijkstra HA (2002) Instability of the thermohaline circulation on interdecadal timescales. J Phys Oceanogr 32:138–160CrossRefGoogle Scholar
  53. te Raa LA, Gerrits J, Dijkstra HA (2004) Identification of the mechanism of interdecadal variability in the north atlantic ocean. J Phys Oceanogr 34:2792–2807CrossRefGoogle Scholar
  54. Timmermann A, Gildor H, Schultz M, Tziperman E (2003) Coherent resonant millennial-scale climate oscillations triggered by massive meltwater pulses. J Clim 16:2569–2585CrossRefGoogle Scholar
  55. Timmermann A, Latif M, Voss R, Grtzner A (1998) Northern hemispheric interdecadal variability: a coupled air-sea mode. J Clim 11:1906–1931CrossRefGoogle Scholar
  56. Weaver AJ et al (2001) The UVic earth system climate model: model description, climatology, and applications to past, present and future climates. Atmos Ocean 34:1067–1109Google Scholar
  57. Winton M (1997) The effect of cold climate upon North Atlantic Deep Water formation in a simple ocean-atmosphere model. J Clim 10:37–51CrossRefGoogle Scholar
  58. Winton M, Sarachik ES (1993) Thermohaline oscillations induced by strong steady salinity forcing of ocean general circulation models. J Phys Oceanogr 23:1389–1410CrossRefGoogle Scholar
  59. Wolff EW, Chappellaz J, Blunier T, Rasmussen SO, Svensson A (2010) Millennial-scale variability during the last glacial: the ice core record. Quat Sci Rev 29:2828–2838CrossRefGoogle Scholar
  60. Wunsch C(2006) Abrupt climate change: an alternative view. Quat Res 65:191–203CrossRefGoogle Scholar
  61. Yin J, Stouffer RJ, Spelman MJ, Griffies SM (2010) Evaluating the uncertainty induced by the virtual salt flux assumption in climate simulations and future projections. J Clim 23:80–96CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Olivier Arzel
    • 1
    • 2
  • Matthew H. England
    • 1
  • Alain Colin de Verdière
    • 2
  • Thierry Huck
    • 2
  1. 1.Climate Change Research Centre (CCRC)The University of New South WalesSydneyAustralia
  2. 2.Laboratoire de Physique des Océans (LPO)Université de Bretagne OccidentaleBrestFrance

Personalised recommendations