Climate Dynamics

, Volume 39, Issue 1–2, pp 227–238 | Cite as

Anomalous climatic conditions associated with the El Niño Modoki during boreal winter of 2009

  • J. V. Ratnam
  • S. K. Behera
  • Y. Masumoto
  • K. Takahashi
  • T. Yamagata
Article

Abstract

The winter months from December 2009 to February 2010 witnessed extreme conditions affecting lives of millions of people around the globe. During this winter, the El Niño Modoki in the tropical Pacific was a dominant climatic mode. In this study, exclusive impacts of the El Niño Modoki are evaluated with an Atmospheric General Circulation Model. Sensitivity experiments are conducted by selectively specifying anomalies of the observed sea surface temperature in the tropical Pacific. Observed data are also used in the diagnostics to trace the source of forced Rossby waves. Both the observational results and the model simulated results show that the heating associated with the El Niño Modoki in the central tropical Pacific accounted for most of the anomalous conditions observed over southern parts of North America, Europe and over most countries in the Southern Hemisphere viz. Uruguay. Unlike those, the model-simulated results suggest that the anomalously high precipitation observed over Australia and Florida might be associated with the narrow eastern Pacific heating observed during the season.

Keywords

El Niño El Niño Modoki AGCM 

Notes

Acknowledgments

The authors would like to thank the reviewers for the insightful comments which improved the quality of the manuscript. The NCEP reanalysis data was provided by NOAA/OAR/ESRL/PSD, Boulder, Colorado, USA from their web site at http://www.esrl.noaa.gov/psd. The precipitation data was obtained from ftp://ftp.cpc.ncep.noaa.gov/precip/data-req/cams_opi_v0208/. The sea surface temperature data was provided by National Climatic Data Center, USA from their web site.

References

  1. Ambrizzi T, Hoskins BJ (1997) Stationary Rossby wave propagation in a baroclinic atmosphere. Q J R Meteorol Soc 123:919–928CrossRefGoogle Scholar
  2. Ashok K, Yamagata T (2009) Climate change: the El Niño with a difference. Nature 461:481–484CrossRefGoogle Scholar
  3. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi: 10.1029/2006JC003798
  4. Chou M-D (1992) A solar radiation model for use in climate studies. J Atmos Sci 49:762–772CrossRefGoogle Scholar
  5. Chou M-D, Lee K-T, Tsay S-C, Fu Q (1999) Parameterization for cloud longwave scattering for use in atmospheric models. J Clim 12:159–169CrossRefGoogle Scholar
  6. Cohen J, Foster J, Barlow M, Saito K, Jones J (2010) Winter 2009–10: a case study of an extreme Arctic Oscillation event. Geophys Res Lett 37:L17707CrossRefGoogle Scholar
  7. Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah Land Surface Model advances in National Center for Environmental Prediction operational Eta model. J Geophys Res 108(D22):8851CrossRefGoogle Scholar
  8. Feldstein SB (2002) The recent trend and variance increase of annular mode. J Clim 13:617–633Google Scholar
  9. Feng J, Chen W, Tam C-Y, Zhou W (2010) Difference impacts of El Niño and El Niño Modoki on china rainfall in the decaying phases. Int J Climatol. doi: 10.1002/joc.2217 Google Scholar
  10. Garcia-Serrano J, Rodriguex-Fonseca B, Blade I, Zurita-Gotor P, de la Camara A (2010) Rotational atmospheric circulation during north Atlantic-European winter: the influence of ENSO. Clim Dyn. doi: 10.1007/s00382-010-0968-y Google Scholar
  11. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462CrossRefGoogle Scholar
  12. Hoerling MP, Kumar A (1997) Why do North American climate anomalies differ from one El Niño event to another ? Geophys Res Lett 24:1059–1062CrossRefGoogle Scholar
  13. Hoerling MP, Ting M, Kumar A (1995) Zonal flow-Stationary wave relationship during El Niño: implications for Seasonal forecasting. J Clim 8:1838–1852CrossRefGoogle Scholar
  14. Hoerling MP, Hurrell JW, Xu T (2001) Tropical origins for recent north Atlantic climate change. Science 292:90–92CrossRefGoogle Scholar
  15. Hong S-Y, Pan H-L (1996) Nonlocal boundary layer vertical diffusion in a medium range forecast model. Mon Weather Rev 124:2322–2339CrossRefGoogle Scholar
  16. Hoskins BJ, Ambrizzi T (1993) Rossby wave propagation on a realistic longitudinally varying flow. J Atmos Sci 50:1661–1671CrossRefGoogle Scholar
  17. Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196CrossRefGoogle Scholar
  18. Janowiak JE, Xie P (1999) CAMS_OPI: a global satellite-rain gauge merged product for real-time precipitation monitoring applications. J Clim 12:3335–3342CrossRefGoogle Scholar
  19. Jia X, Lin H, Derome J (2009) The influence of tropical pacific forcing on the Arctic oscillation. Clim Dyn 32:495–509CrossRefGoogle Scholar
  20. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  21. Kanamitsu M et al (2002) NCEP dynamical seasonal forecast system 2000. Bull Am Meteorol Soc 83:1019–1037CrossRefGoogle Scholar
  22. Karoly DJ (1989) Southern hemisphere circulation features associated with El Niño-Southern oscillation events. J Clim 2:1239–1252CrossRefGoogle Scholar
  23. L’Heureux M, Butler A, Jha B, Kumar A, Wang W (2010) Unusual extremes in the negative phase of the Arctic oscillation during 2009. Geophys Res Lett 37:L10704CrossRefGoogle Scholar
  24. Li S, Hoerling MP, Peng S, Weickmann KM (2006) The annular response to tropical Pacific SST forcing. J Clim 19:1802–1819CrossRefGoogle Scholar
  25. Matsumura S, Huang G, Xie S-P, Yamazaki K (2010) SST-forced and internal variability of the atmosphere in an ensemble GCM simulation. J Meteorol Soc Jpn 88:43–62CrossRefGoogle Scholar
  26. Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteorol Soc Jpn 44:25–43Google Scholar
  27. Moorthi S, Suarez MJ (1992) Relaxed Arakawa-Schubert. A parameterization of moist convection for general circulation models. Mon Weather Rev 120:978–1002CrossRefGoogle Scholar
  28. Quadrelli R, Wallace JM (2002) Dependence of the structure of the northern hemisphere annular mode on the polarity of ENSO. Geophys Res Lett 29:2132CrossRefGoogle Scholar
  29. Ratnam JV, Behera SK, Masumoto Y, Takahashi K, Yamagata T (2010) Pacific origin for the 2009 Indian summer monsoon failure. Geophys Res Lett 37:L07807CrossRefGoogle Scholar
  30. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution blended analyses for sea surface temperature. J Clim 20:5473–5496CrossRefGoogle Scholar
  31. Shukla J, Wallace JM (1983) Numerical simulation of the atmospheric response to equatorial Pacific Sea surface temperature anomalies. J Atmos Sci 40:1613–1630CrossRefGoogle Scholar
  32. Takaya K, Nakamura H (2001) A formulation of a phase-independent wave activity flux for stationary and migratory quasigeostrophic eddies on a zonal varying basic flow. J Atmos Sci 58:608–627CrossRefGoogle Scholar
  33. Taschetto AS, Haarsma RJ, Sengupta A, Ummenhofer CC, Hill KJ, England MJ (2010) Australian monsoon variability driven by a Gill-Matsuno type response to central west Pacific warming. J Clim 23:4717–4736CrossRefGoogle Scholar
  34. Thompson DWJ, Wallace JM (2001) Regional climate impacts of the Northern Hemisphere annular mode. Science 293:85–89CrossRefGoogle Scholar
  35. Ting M, Sardeshmukh PD (1993) Factors determining the extratropical response to equatorial diabetic heating anomalies. J Atmos Sci 50:907–918CrossRefGoogle Scholar
  36. Ting M, Hoerling MP, Xu T, Kumar A (1996) Northern hemisphere teleconnection patterns during extreme phases of the zonal-mean circulation. J Clim 9:2614–2632CrossRefGoogle Scholar
  37. Toniazo T, Scaife AA (2006) The influence of ENSO on winter north Atlantic climate. Geophys Res Lett 33:L24704CrossRefGoogle Scholar
  38. Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau N-C, Ropelwski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103:14292–14324CrossRefGoogle Scholar
  39. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109:784–811CrossRefGoogle Scholar
  40. Weng H, Ashok K, Behera SK, Rao SA, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29:113–129CrossRefGoogle Scholar
  41. Weng H, Behera SK, Yamagata T (2009) Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Clim Dyn 32:663–674CrossRefGoogle Scholar
  42. Yamashita Y, Tanaka HL, Takahashi M (2005) Observational analysis of the local structure of wave activity flux associated with the maintenance of Arctic oscillation index. SOLA 1:53–56CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • J. V. Ratnam
    • 1
    • 2
  • S. K. Behera
    • 1
    • 2
  • Y. Masumoto
    • 1
    • 4
  • K. Takahashi
    • 2
    • 3
  • T. Yamagata
    • 2
    • 4
  1. 1.Research Institute for Global ChangeYokohamaJapan
  2. 2.Application LaboratoryYokohamaJapan
  3. 3.Earth Simulator CenterYokohamaJapan
  4. 4.School of ScienceThe University of TokyoTokyoJapan

Personalised recommendations