Climate Dynamics

, Volume 38, Issue 1–2, pp 75–86 | Cite as

A 40-year accumulation dataset for Adelie Land, Antarctica and its application for model validation

  • Cécile Agosta
  • Vincent Favier
  • Christophe Genthon
  • Hubert Gallée
  • Gerhard Krinner
  • Jan T. M. Lenaerts
  • Michiel R. van den Broeke
Article

Abstract

The GLACIOCLIM-SAMBA (GS) Antarctic accumulation monitoring network, which extends from the coast of Adelie Land to the Antarctic plateau, has been surveyed annually since 2004. The network includes a 156-km stake-line from the coast inland, along which accumulation shows high spatial and interannual variability with a mean value of 362 mm water equivalent a−1. In this paper, this accumulation is compared with older accumulation reports from between 1971 and 1991. The mean and annual standard deviation and the km-scale spatial pattern of accumulation were seen to be very similar in the older and more recent data. The data did not reveal any significant accumulation trend over the last 40 years. The ECMWF analysis-based forecasts (ERA-40 and ERA-Interim), a stretched-grid global general circulation model (LMDZ4) and three regional circulation models (PMM5, MAR and RACMO2), all with high resolution over Antarctica (27–125 km), were tested against the GS reports. They qualitatively reproduced the meso-scale spatial pattern of the annual-mean accumulation except MAR. MAR significantly underestimated mean accumulation, while LMDZ4 and RACMO2 overestimated it. ERA-40 and the regional models that use ERA-40 as lateral boundary condition qualitatively reproduced the chronology of interannual variability but underestimated the magnitude of interannual variations. Two widely used climatologies for Antarctic accumulation agreed well with the mean GS data. The model-based climatology was also able to reproduce the observed spatial pattern. These data thus provide new stringent constraints on models and other large-scale evaluations of the Antarctic accumulation.

Keywords

Mass balance Antarctica Accumulation Spatial variability Temporal variability Model validation 

References

  1. Arthern RJ, Winebrenner DP, Vaughan DG (2006) Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission. J Geophys Res 111:D06107. doi:10.1029/2004JD005667 CrossRefGoogle Scholar
  2. Bamber JL, Gomez-Dans JL, Griggs JA (2009) Antarctic 1 km digital elevation model (DEM) from combined ERS-1 radar and ICESat laser satellite altimetry. National Snow and Ice Data Center, BoulderGoogle Scholar
  3. Bromwich DH, Cassano JJ, Klein T, Heinemann G, Hines KM, Steffen K, Box JE (2001) Mesoscale modeling of katabatic winds over Greenland with the polar MM5. Mon Weather Rev 129(9):2290–2309CrossRefGoogle Scholar
  4. Cassano JJ, Parish TR, King JC (2001) Evaluation of turbulent surface flux parameterizations for the stable surface layer over Halley, Antarctica. Mon Weather Rev 129(1):26–46CrossRefGoogle Scholar
  5. Eisen O, Frezzotti M, Genthon C et al (2008) Ground-based measurements of spatial and temporal variability of snow accumulation in east Antarctica. Rev Geophys 46(1):RG2001. doi:10.1029/2006RG000218 CrossRefGoogle Scholar
  6. Ettema J, van den Broeke MR, van Meijgaard E, van de Berg WJ, Bamber JL, Box JE, Bales RC (2009) Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophys Res Lett 36:L12501. doi:10.1029/2009GL038110 CrossRefGoogle Scholar
  7. Frezzotti M, Pourchet M, Flora O, Gandolfi S (2004) New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements. Clim Dyn 23:803–813. doi:10.1007/s00382-004-0462-5 CrossRefGoogle Scholar
  8. Gallée H, Duynkerke PG (1997) Air-snow interactions and the surface energy and mass balance over the melting zone of west Greenland during the Greenland Ice margin experiment. J Geophys Res 102(D12):13813–13824CrossRefGoogle Scholar
  9. Gallée H, Pettré P (1998) Dynamical constraints on katabatic wind cessation in Adelie Land, Antarctica. J Atmos Sci 55(10):1755–1770CrossRefGoogle Scholar
  10. Gallée H, Schayes G (1994) Development of a 3-dimensional meso-gamma primitive equation model—katabatic winds simulation in the area of Terra-Nova Bay, Antarctica. Mon Weather Rev 122(4):671–685CrossRefGoogle Scholar
  11. Gallée H, Guyomarc’h G, Brun E (2001) Impact of snow drift on the Antarctic ice sheet surface mass balance: possible sensitivity to snow-surface properties. Boundary-Layer Meteorol 99:1–19CrossRefGoogle Scholar
  12. Genthon C, Kaspari S, Mayewski PA (2005) Interannual variability of the surface mass balance of West Antarctica from ITASE cores and ERA40 reanalyses, 1958–2000. Clim Dyn 24(7–8):759–770. doi:10.1007/s00382-005-0019-2 CrossRefGoogle Scholar
  13. Genthon C, Lardeux P, Krinner G (2007) The surface accumulation and ablation of a coastal blue-ice area near Cap Prudhomme, Terre Adélie, Antarctica. J Glaciol 53(183):635–645. doi:10.3189/002214307784409333 CrossRefGoogle Scholar
  14. Genthon C, Krinner G, Castebrunet H (2009) Antarctic precipitation and climate change predictions: horizontal resolution and margin vs plateau issues. Ann Glaciol 50:55–60CrossRefGoogle Scholar
  15. Grell GL, Dudhia J, Stauffer DR (1994) A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR technical note NCAR/TN-398CSTR, p 117. National Center for Atmospheric Research, Boulder, ColoradoGoogle Scholar
  16. Helsen MM, van den Broeke MR, van de Wal RSW, van de Berg WJ, van Meijgaard E, Davis CH, Li Y, Goodwin I (2008) Elevation changes in Antarctica mainly determined by accumulation variability. Science 320(5883):1626–1629. doi:10.1126/science.1153894 CrossRefGoogle Scholar
  17. Hourdin F, Musat I, Bony S et al (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27:787–813. doi:10.1007/s00382-006-0158-0 CrossRefGoogle Scholar
  18. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  19. King JC, Turner J (1997) Antarctic meteorology and climatology. Cambridge atmospheric and space science series. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. Kitanidis PK (1997) Introduction to geostatistics: applications to hydrogeology. Cambridge University Press, New YorkCrossRefGoogle Scholar
  21. König-Langlo G, King JC, Pettré P (1998) Climatology of the three coastal Antarctic stations Dumont d’Urville, Neumayer, and Halley. J Geophys Res 103(D9):10935–10946CrossRefGoogle Scholar
  22. Krinner G, Genthon C, Li ZX, Le Van P (1997) Studies of the Antarctic climate with a stretched-grid general circulation model. J Geophys Res 102(D12):13731–13745CrossRefGoogle Scholar
  23. Krinner G, Magand O, Simmonds I, Genthon C, Dufresne J (2007) Simulated Antarctic precipitation and surface mass balance at the end of the twentieth and twenty-first centuries. Clim Dyn 28(2–3):215–230. doi:10.1007/s00382-006-0177-x Google Scholar
  24. Lenaerts JTM, van den Broeke MR, Déry SJ, König-Langlo G, Ettema J, Munneke PK (2010) Modelling snowdrift sublimation on an Antarctic ice shelf. The Cryosphere 4(2):179–190. doi:10.5194/tc-4-179-2010 CrossRefGoogle Scholar
  25. Magand O, Genthon C, Fily M, Krinner G, Picard G, Frezzotti M, Ekaykin AA (2007) An up-to-date quality-controlled surface mass balance data set for the 90 degrees-180 degrees E Antarctica sector and 1950–2005 period. J Geophys Res 112(D12):D12106. doi:10.1029/2006JD007691 CrossRefGoogle Scholar
  26. Magand O, Picard G, Brucker L, Fily M, Genthon C (2008) Snow melting bias in microwave mapping of Antarctic snow accumulation. The Cryosphere 2:109–115CrossRefGoogle Scholar
  27. Marti O, Braconnot P, Bellier J et al (2006) The new IPSL climate system model: IPSL-CM4. Note du Pôle de Modélisation n. 26. IPSL, ISSN 1288–1619Google Scholar
  28. Mayewski PA, Meredith MP, Summerhayes CP et al (2009) State of the Antarctic and Southern Ocean climate system. Rev Geophys 47:RG1003. doi:10.1029/2007RG000231 CrossRefGoogle Scholar
  29. Monaghan AJ, Bromwich DH, Fogt RL et al (2006a) Insignificant change in Antarctic snowfall since the International Geophysical Year. Science 313(5788):827–831. doi:10.1126/science.1128243 CrossRefGoogle Scholar
  30. Monaghan AJ, Bromwich DH, Wang S (2006b) Recent trends in Antarctic snow accumulation from polar MM5 simulations. Philos Trans R Soc A 364(1844):1683–1708. doi:10.1098/rsta.2006.1795 CrossRefGoogle Scholar
  31. Pettré P, Pinglot JF, Pourchet M, Reynaud L (1986) Accumulation distribution in Terre Adélie, Antarctica: effect of meteorological parameters. J Glaciol 32(112112):486–500Google Scholar
  32. Richardson-Näslund C (2004) Spatial characteristics of snow accumulation in Dronning Maud Land, Antarctica. Glob Planet Chang 42(1–4):31–43. doi:10.1016/j.gloplacha.2003.11.009
  33. Rignot E, Bamber JL, van den Broeke MR, Davis C, Li Y, van de Berg WJ, van Meijgaard E (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat Geosci 1(2):106–110. doi:10.1038/ngeo102 CrossRefGoogle Scholar
  34. Simmons A, Uppala S, Dee D, Kobayashi S (2006) ERA-interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newslett 110:25–35Google Scholar
  35. Uppala SM, Kallberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012. doi:10.1256/qj.04.176 CrossRefGoogle Scholar
  36. van de Berg WJ, van den Broeke MR, Reijmer C, van Meijgaard E (2006) Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J Geophys Res 111:D11104. doi:10.1029/2005JD006495 CrossRefGoogle Scholar
  37. Vaughan DG, Russell J (1997) Compilation of surface mass balance measurements in Antarctica. Internal rep. ES4/8/1/1997/1. British Antarctic Survey, Cambridge, UKGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Cécile Agosta
    • 1
  • Vincent Favier
    • 1
  • Christophe Genthon
    • 2
  • Hubert Gallée
    • 2
  • Gerhard Krinner
    • 2
  • Jan T. M. Lenaerts
    • 3
  • Michiel R. van den Broeke
    • 3
  1. 1.UJF-Grenoble 1 / CNRS, Laboratoire de Glaciologie et de Géophysique de l’Environnement UMR 5183Saint Martin d’Hères CedexFrance
  2. 2.CNRS / UJF-Grenoble 1, Laboratoire de Glaciologie et de Géophysique de l’Environnement UMR 5183Saint Martin d’Hères CedexFrance
  3. 3.Institute for Marine and Atmospheric Research UtrechtUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations