Climate Dynamics

, Volume 38, Issue 9–10, pp 2099–2113

Northern Alaskan land surface response to reduced Arctic sea ice extent

Article

Abstract

With Arctic sea ice extent at near-record lows, an improved understanding of the relationship between sea ice and the land surface is warranted. We examine the land surface response to changing sea ice by first conducting a simulation using the Community Atmospheric Model version 3.1 with end of the twenty-first century sea ice extent. This future atmospheric response is then used to force the Weather and Research Forecasting Model version 3.1 to examine the terrestrial land surface response at high resolution over the North Slope of Alaska. Similar control simulations with twentieth century sea ice projections are also performed, and in both simulations only sea ice extent is altered. In the future sea ice extent experiment, atmospheric temperature increases significantly due to increases in latent and sensible heat flux, particularly in the winter season. Precipitation and snow pack increase significantly, and the increased snow pack contributes to warmer soil temperatures for most seasons by insulating the land surface. In the summer, however, soil temperatures are reduced due to increased albedo. Despite warmer near-surface atmospheric temperatures, it is found that spring melt is delayed throughout much of the North Slope due to the increased snow pack, and the growing season length is shortened.

Keywords

Arctic Sea ice Snow Land surface 

References

  1. Bhatt US, Walker DA, Raynolds MK, Comiso JC, Epstein HE, Jia GS, Gens R, Pinzon JE, Tucker CJ, Tweedie CE, Webber PJ (2010) Circumpolar Arctic Tundra vegetation change is linked to sea ice decline. Earth Interact 14. doi:10.1175/2010EI315.1
  2. Bukovsky MS, Karoly DJ (2009) Precipitation simulations using WRF as a nested regional climate model. J Appl Meteorol Clim 48(10):2152–2159. doi:10.1175/2009JAMC2186.1 CrossRefGoogle Scholar
  3. Cassano JJ, Higgins ME, Seefeldt MW (2011) Performance of the weather research and forecasting (WRF) model for month-long pan-Arctic simulations. Month Weather Rev. doi:10.1175/MWR-D-10-05065.1
  4. Chapin FS, Sturm M, Serreze MC, McFadden JP, Key JR, Lloyd AH, McGuire AD, Rupp TS, Lynch AH, Schimel JP, Beringer J, Chapman WL, Epstein HE, Euskirchen ES, Hinzman LD, Jia G, Ping CL, Tape KD, Thompson CDC, Walker DA, Welker JM (2005) Role of land-surface changes in Arctic summer warming. Science 310(5748):657–660. doi:10.1126/science.1117368 CrossRefGoogle Scholar
  5. Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic Sea ice cover. Geophys Res Lett 35 (1). doi:10.1029/2007GL031972
  6. Deser C, Tomas R, Alexander M, Lawrence D (2010) The seasonal atmospheric response to projected Arctic Sea ice loss in the late twenty-first century. J Clim 23(2):333–351. doi:10.1175/2009jcli3053.1 CrossRefGoogle Scholar
  7. Dutton EG, Endres DJ (1991) Date of snowmelt at Barrow, Alaska, USA. Arctic Alpine Res 23(1):115–119CrossRefGoogle Scholar
  8. Euskirchen ES, McGuire AD, Kicklighter DW, Zhuang Q, Clein JS, Dargaville RJ, Dye DG, Kimball JS, McDonald KC, Melillo JM, Romanovsky VE, Smith NV (2006) Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Glob Change Biol 12(4):731–750. doi:10.1111/j.1365-2486.2006.01113.x CrossRefGoogle Scholar
  9. Higgins ME, Cassano JJ (2009) Impacts of reduced sea ice on winter Arctic atmospheric circulation, precipitation, and temperature. J Geophys Res Atmos 114. doi:10.1029/2009JD011884
  10. Higgins ME, Cassano JJ (2010) Response of Arctic 1000 hPa circulation to changes in horizontal resolution and sea ice forcing in the Community Atmospheric Model. J Geophys Res Atmos 115 (D17):D17114. doi: 10.1029/2009jd013440
  11. Hurrell JW, Hack JJ, Shea D, Caron JM, Rosinski J (2008) A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J Clim 21(19):5145–5153. doi:10.1175/2008jcli2292.1 CrossRefGoogle Scholar
  12. Jia GSJ, Epstein HE, Walker DA (2003) Greening of arctic Alaska, 1981–2001. Geophys Res Lett 30(20):2067. doi:10.1029/2003GL018268
  13. Lawrence DM, Slater AG (2005) A projection of severe near-surface permafrost degradation during the 21st century. Geophys Res Lett 32(24). doi:10.1029/2005GL025080
  14. Lawrence DM, Slater AG (2010) The contribution of snow condition trends to future ground climate. Clim Dyn 34(7–8):969–981. doi:10.1007/s00382-009-0537-4 CrossRefGoogle Scholar
  15. Lawrence DM, Slater AG, Tomas RA, Holland MM, Deser C (2008) Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophys Res Lett 35(11). doi:10.1029/2008GL033985
  16. Leitzell K (2009) Arctic sea ice extent remains low; 2009 sees third-lowest mark. National Snow and Ice Data Center. http://nsidc.org/news/press/20091005_minimumpr.html. Accessed 6 Oct 2009
  17. Qian HF, Joseph R, Zeng N (2010) Enhanced terrestrial carbon uptake in the Northern High Latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections. Glob Change Biol 16(2):641–656. doi:10.1111/j.1365-2486.2009.01989.x CrossRefGoogle Scholar
  18. Richter-Menge J (2009) The Arctic [in “State of the Climate in 2008”]. Bull Am Meteorol Soc 90(8):S97–S112Google Scholar
  19. Smith NV, Saatchi SS, Randerson JT (2004) Trends in high northern latitude soil freeze and thaw cycles from 1988 to 2002. J Geophys Res Atmos 109(D12). doi:10.1029/2003JD004472
  20. Stone RS, Dutton EG, Harris JM, Longenecker D (2002) Earlier spring snowmelt in northern Alaska as an indicator of climate change. J Geophys Res Atmos 107(D10). doi:10.1029/2000JD000286
  21. Verbyla D (2008) The greening and browning of Alaska based on 1982–2003 satellite data. Glob Ecol Biogeogr 17(4):547–555. doi:10.1111/j.1466-8238.2008.00396.x CrossRefGoogle Scholar
  22. Wilson SD, Nilsson C (2009) Arctic alpine vegetation change over 20 years. Glob Change Biol 15(7):1676–1684. doi:10.1111/j.1365-2486.2009.01896.x CrossRefGoogle Scholar
  23. Zimov SA, Schuur EAG, Chapin FS (2006) Permafrost and the global carbon budget. Science 312:1612–1613. doi:10.1126/science.1128908 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA
  2. 2.Cooperative Institute for Research in Environmental Sciences, Department of Atmospheric and Oceanic SciencesUniversity of ColoradoBoulderUSA

Personalised recommendations