Climate Dynamics

, Volume 38, Issue 3–4, pp 761–774 | Cite as

Sensitivity of the Humboldt Current system to global warming: a downscaling experiment of the IPSL-CM4 model

  • Vincent Echevin
  • Katerina Goubanova
  • Ali Belmadani
  • Boris Dewitte
Article

Abstract

The impact of climate warming on the seasonal variability of the Humboldt Current system ocean dynamics is investigated. The IPSL-CM4 large scale ocean circulation resulting from two contrasted climate scenarios, the so-called Preindustrial and quadrupling CO2, are downscaled using an eddy-resolving regional ocean circulation model. The intense surface heating by the atmosphere in the quadrupling CO2 scenario leads to a strong increase of the surface density stratification, a thinner coastal jet, an enhanced Peru–Chile undercurrent, and an intensification of nearshore turbulence. Upwelling rates respond quasi-linearly to the change in wind stress associated with anthropogenic forcing, and show a moderate decrease in summer off Peru and a strong increase off Chile. Results from sensitivity experiments show that a 50% wind stress increase does not compensate for the surface warming resulting from heat flux forcing and that the associated mesoscale turbulence increase is a robust feature.

Keywords

Regional climate change Peru–Chile upwelling system Mesoscale dynamics Coastal upwelling 

Notes

Acknowledgments

Numerical simulations were performed on the IDRIS NEC-SX8 calculator. V. Echevin and B. Dewitte are funded by the Institut de Recherche pour le Développement (IRD). K. Goubanova was supported by the AXA foundation. A. Belmadani was co-funded by the IRD Département de Soutien et Formation (DSF), Collecte Localisation Satellites (CLS). All authors received support from the PCCC and PEPS-VMCS2008 ANR projects during the development of this work. F. Colas is acknowledged for providing the matlab routines used to calculate the barotropic and baroclinic instability energy conversion terms.

References

  1. Albert A, Echevin V, Lévy M, Aumont O (2010) Impact of nearshore wind stress curl on coastal circulation and primary production in the Peru upwelling system. J Geophys Res 115:C12033. doi:10.1029/2010JC006569 CrossRefGoogle Scholar
  2. Auad G, Miller A, Di Lorenzo E (2006) Long-term forecast of oceanic conditions off California and their biological implications. J Geophys Res 111:C09008. doi:10.1029/2005JC003219 CrossRefGoogle Scholar
  3. Bakun A (1990) Global climate change and intensification of coastal ocean upwelling. Science 247:198–201CrossRefGoogle Scholar
  4. Bakun A (1996) Patterns in the ocean. Ocean processes and marine population dynamics. University of California Sea Grant, California, USA, in cooperation with Centro de Investigaciones Biologicas de Noroeste, La Paz, Baja California Sur, Mexico, 323 ppGoogle Scholar
  5. Bakun A, Weeks S (2008) The marine ecosystem off Peru: What are the secrets of its fishery productivity and what might its future hold? Prog Oceanogr 79:290–299CrossRefGoogle Scholar
  6. Bakun A, Field D, Renondo-Rodriguez A, Weeks S (2010) Greenhouse gas, upwelling favourable winds, and the future of upwelling systems. Global Change Biol 16(4):1213–1228CrossRefGoogle Scholar
  7. Barnier B, Siefridt L, Marchesiello P (1995) Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses. J Mar Syst 6:363–380CrossRefGoogle Scholar
  8. Belmadani A, Dewitte B, An SI (2010) ENSO feedbacks and associated timescales of variability in a multi-model ensemble. J Clim 23(12):3181–3204CrossRefGoogle Scholar
  9. Brochier T, Lett C, Tam J, Fréon P, Colas F, Ayon P (2008) An individual-based model study of anchovy early life history in the northern Humboldt current system. In: Werner F, Lough RG, Bertrand A, Guevara Carrasco R, Soler P, Csirke J, Chavez FP (eds) The northern Humboldt current system: ocean dynamics, ecosystem processes and fisheries. Prog Oceanogr 79:313–325Google Scholar
  10. Carr M‐E, Kearns E (2003) Production regimes in four eastern boundary current systems. Deep Sea Res II 50(22–26):3199–3221CrossRefGoogle Scholar
  11. Chavez FP (1995) A comparison of ship and satellite chlorophyll from California and Peru. J Geophys Res 100(C12):24855–24862CrossRefGoogle Scholar
  12. Chavez FP, Messié M (2009) A comparison of eastern boundary upwelling ecosystems. Prog Oceanogr 83:80–96CrossRefGoogle Scholar
  13. Chavez FP, Ryan J, Lluch-Cota SE, Niquen M (2003) From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Nature 299:217–221Google Scholar
  14. Chavez FP, Bertrand A, Guevara-Carrasco R, Soler P, Csirke J (2008) The northern Humboldt Current system: brief history, present status and a view towards the future. Prog Oceanogr 79:95–105CrossRefGoogle Scholar
  15. Colas F, Capet X, McWilliams JC, Shchepetkin AF (2008) 1997–1998 El Niño off Peru: a numerical study. Prog Oceanogr 79:138–155CrossRefGoogle Scholar
  16. Cravatte S, Picaud J, Eldin G (2003) Second and first baroclinic Kelvin modes in the equatorial pacific at intraseasonal times scales. J Geophys Res 108(C8):3266. doi:10.1029/2002JC001511 Google Scholar
  17. Da Silva AM, Young CC, Levitus L (1994) Atlas of surface marine data 1994, vol 1, Algorithms and procedures, technical report. National Oceanic and Atmospheric Administration, SilverGoogle Scholar
  18. Di Lorenzo E, Miller AJ, Schneider N, McWilliams JC (2005) The warming of the California current: dynamics, thermodynamics and ecosystem implications. J Phys Oceanogr 35:336–362CrossRefGoogle Scholar
  19. Echevin V, Aumont O, Ledesma J, Flores G (2008) The seasonal cycle of surface chlorophyll in the Peruvian upwelling system: A modelling study. Prog Oceanogr 79:167–176CrossRefGoogle Scholar
  20. Echevin V, Colas F, Chaigneau A, Penven P (2011) Sensitivity of the Northern Humboldt Current system nearshore modelled circulation to initial and boundary conditions. J Geophys Res (in review)Google Scholar
  21. Falvey M, Garreaud R (2009) Regional cooling in a warming world: Recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). J Geophys Res 114:D04102. doi:10.1029/2008JD010519 CrossRefGoogle Scholar
  22. Garreaud R, Falvey M (2009) The coastal winds off western subtropical South America in future climate scenarios. Int J Climatol 29:543–554. doi:10.1002/joc.1716 CrossRefGoogle Scholar
  23. Garreaud R, Muñoz R (2005) The low-level jet off the subtropical west coast of South America: Structure and variability. Mon Wea Rev 133:2246–2261CrossRefGoogle Scholar
  24. Gordon C, Cooper C, Senior CA, Banks HT, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168CrossRefGoogle Scholar
  25. Goubanova K, Echevin V, Dewitte B, Codron F, Takahashi K, Terray P, Vrac M (2010) Statistical downscaling of sea-surface wind over the Peru-Chile upwelling region: diagnosing the impact of climate change from the IPSL-CM4 model. Clim Dyn. doi:10.1007/s00382-010-0824-0
  26. Guilyardi E (2006) El Nino-mean state-seasonal cycle interactions in a multi-model ensemble. Clim Dyn 26:329–348CrossRefGoogle Scholar
  27. Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, van Oldenborgh GJ, Stockdale T (2009) Understanding El Niño in ocean-atmosphere general circulation models: progress and challenges. Bull Am Meteor Soc 90(3):325–340CrossRefGoogle Scholar
  28. Gutierrez D, Bouloubassi I, Sifeddine A, Purca S, Goubanova S, Graco M, Field D, Méjanelle L, Velazco F, Lorre A, Salvatteci R, Quispe D, Vargas G, Dewitte B, Ortlieb L (2011) Coastal cooling and increased productivity in the main upwelling zone off Peru since the mid-twentieth century, Geophys Res Lett (in press)Google Scholar
  29. Hernandez O, Lehodey P, Senina I, Bertrand A, Castillo R, Echevin V, Gaspar P (2010) Modelling anchovy population in the Humboldt upwelling system, PICES conference, climate change effects on fish and fisheries: forecasting impacts, assessing ecosystem responses, and evaluating management strategies, April 25–29, Sandai, JapanGoogle Scholar
  30. Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY, Krinner G, LeVan P, Li ZX, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27(7–8):787–813CrossRefGoogle Scholar
  31. Jones RG, Noguer M, Hassell DC, Hudson D, Wilson SS, Jenkins GJ, Mitchell JFB (2004) Generating high resolution climate change scenarios using PRECIS. Met. Office Hadley Centre, Exeter, p 40Google Scholar
  32. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–471CrossRefGoogle Scholar
  33. Madec G, Delecluse P, Imbard M, Lévy C (1998) OPA 8.1 ocean general circulation model reference manual. Notes du pôle de modélisation, laboratoire d’océanographie dynamique et de climatologie, Institut Pierre Simon Laplace des sciences de l’environnement global, 11 Dec 1998Google Scholar
  34. Marchesiello P, Estrade P (2010) Upwelling limitation by coastal divergence. J Mar Res (in press)Google Scholar
  35. Marchesiello P, McWilliams JC, Shchepetkin A (2003) Equilibrium structure and dynamics of the California Current System. J Phys Oceanogr 33:753–783CrossRefGoogle Scholar
  36. Marti O, Coauthors (2010) Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim Dyn 34:1–26CrossRefGoogle Scholar
  37. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007a) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteor Soc 88(9):1383–1394CrossRefGoogle Scholar
  38. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007b) Global climate projections. In: Solomon SD et al (eds) Climate change 2007: The physical science basis. Cambridge University Press, Cambridge, pp 747–845Google Scholar
  39. Montes I, Colas F, Capet X, Schneider W (2010) On the pathways of the equatorial subsurface currents in the eastern equatorial Pacific and their contribution to the Peru–Chile undercurrent. J Geophys Res 115:C09003. doi:10.1029/2009JC005710 CrossRefGoogle Scholar
  40. Nakicenovic N, Coauthors (2000) Special report on emissions scenarios: A special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 599Google Scholar
  41. Pedlosky J (1987) Geophysical fluid dynamics, 2nd edn. Springer, Berlin 710 pCrossRefGoogle Scholar
  42. Penven P, Echevin V, Pasapera J, Colas F, Tam J (2005) Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: A modeling approach. J Geophys Res 110(C10): C1002110. doi:1029/2005JC002945
  43. Penven P, Marchesiello P, Debreu L, Lefevre J (2008) Software tools for pre- and post-processing of oceanic regional simulations. Environ Model Softw 23:660–662CrossRefGoogle Scholar
  44. Pope V, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parameterizations in the Hadley centre climate model: HadAM3. Clim Dyn 16:123–146CrossRefGoogle Scholar
  45. Reynolds RW, Smith TM (1994) Improved global sea surface temperature analyses using optimum interpolation. J Clim 7:929–948CrossRefGoogle Scholar
  46. Shchepetkin AF, McWilliams JC (2005) The regional oceanic modeling system: A split-explicit, free-surface, topography-following-coordinate ocean model. Ocean Model 9:347–404CrossRefGoogle Scholar
  47. Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1957–1962Google Scholar
  48. Snyder MA, Sloan LC, Diffenbaugh NS, Bell JL (2003) Future climate change and upwelling in the California Current. Geophys Res Lett 30(15):1823. doi:10.1029/2003GL017647 CrossRefGoogle Scholar
  49. Strub PT, Mesias JM, Montecino V, Rutllant J, Salinas S (1998) Coastal ocean circulation off western South America. In: Robinson AR, Brink KH (eds) The Sea, vol 11. Wiley, New York, pp 273–314Google Scholar
  50. Uppala S, KAllberg PW, Simmons AJ et al (2005) The ERA-40 reanalysis. Quart J R Meteor Soc 131:2961–3012CrossRefGoogle Scholar
  51. van Oldenborgh GJ, Philip SY, Collins M (2005) El Niño in a changing climate: a multi-model study. Ocean Sci 1:81–95Google Scholar
  52. Vecchi GA, Soden BJ (2007) Global warming and the weakening of tropical circulation. J Clim 20:4316–4340CrossRefGoogle Scholar
  53. Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441:73–76. doi:10.1038/nature04744 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Vincent Echevin
    • 1
  • Katerina Goubanova
    • 2
    • 3
  • Ali Belmadani
    • 1
    • 2
    • 4
  • Boris Dewitte
    • 2
    • 3
  1. 1.LOCEANParisFrance
  2. 2.LEGOSToulouseFrance
  3. 3.IMARPE, IGP, LEGOSLimaPeru
  4. 4.IPRC, International Pacific Research Center, SOESTUniversity of Hawaii at ManoaHonoluluHawaii

Personalised recommendations