Advertisement

Climate Dynamics

, Volume 38, Issue 9–10, pp 1925–1947 | Cite as

Variability of the Atlantic meridional overturning circulation in the last millennium and two IPCC scenarios

  • Pablo OrtegaEmail author
  • Marisa Montoya
  • Fidel González-Rouco
  • Juliette Mignot
  • Stephanie Legutke
Article

Abstract

The variability of the Atlantic meridional overturning circulation (AMOC) is investigated in several climate simulations with the ECHO-G atmosphere-ocean general circulation model, including two forced integrations of the last millennium, one millennial-long control run, and two future scenario simulations of the twenty-first century. This constitutes a new framework in which the AMOC response to future climate change conditions is addressed in the context of both its past evolution and its natural variability. The main mechanisms responsible for the AMOC variability at interannual and multidecadal time scales are described. At high frequencies, the AMOC is directly responding to local changes in the Ekman transport, associated with three modes of climate variability: El Niño-Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the East Atlantic (EA) pattern. At low frequencies, the AMOC is largely controlled by convection activity south of Greenland. Again, the atmosphere is found to play a leading role in these variations. Positive anomalies of convection are preceded in 1 year by intensified zonal winds, associated in the forced runs to a positive NAO-like pattern. Finally, the sensitivity of the AMOC to three different forcing factors is investigated. The major impact is associated with increasing greenhouse gases, given their strong and persistent radiative forcing. Starting in the Industrial Era and continuing in the future scenarios, the AMOC experiences a final decrease of up to 40% with respect to the preindustrial average. Also, a weak but significant AMOC strengthening is found in response to the major volcanic eruptions, which produce colder and saltier surface conditions over the main convection regions. In contrast, no meaningful impact of the solar forcing on the AMOC is observed. Indeed, solar irradiance only affects convection in the Nordic Seas, with a marginal contribution to the AMOC variability in the ECHO-G runs.

Keywords

Atlantic meridional overturning circulation Future climate change Multidecadal variability Forced millennial simulations 

Notes

Acknowledgments

This work was possible thanks to the funding by the MCINN projects CGL2005-06097 and CGL2008-06558-C02-C01/CLI, the MARM project 200800050084028 and also by the European Community’s 7th framework programme (FP7/2007–2013) under grant agreement No. GA212643 (THOR: “Thermohaline Overturning circulation at Risk?’, 2008–2012). The authors are grateful to the four anonymous reviewers for their helpful comments and suggestions that helped improve the current version of the manuscript. We would also like to thank Myriam Khodri and Didier Swingedouw for their valuable advice.

References

  1. Bacon S, Gould WJ, Jia Y (2003) Open convection in the Irminger Sea. Geophys Res Lett 30:1246CrossRefGoogle Scholar
  2. Baehr J, Keller K, Marotzke J (2008) Detecting potential changes in the meridional overturning circulation at 26n in the atlantic. Clim Change 91(1–2):11–27, doi: 10.1007/s10584-006-9153-z CrossRefGoogle Scholar
  3. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Monthly Weather Rev 115:1083–1126CrossRefGoogle Scholar
  4. Bauer E, Claussen M, Brovkin V, Huenerbein A (2003) Assessing climate forcings of the earth system for the past millennium. Geophys Res Lett 30:1276, doi: 10.1029/2002GL016,639 CrossRefGoogle Scholar
  5. Beltrami H, González-Rouco JF, Stevens MB (2006) Subsurface temperatures during the last millennium: model and observation. Geophys Res Lett 33:L09,705, doi: 10.1029/2006GL026050 Google Scholar
  6. Bentsen M, Drange H, Furevik T, Zhou T (2004) Simulated variability of the atlantic meridional overturning circulation. Clim Dyn 22:701–720CrossRefGoogle Scholar
  7. Bloomfield P (1976) Fourier analysis of time series: an introduction. Wiley, New YorkGoogle Scholar
  8. Bretherton C, Widmann M, Dymnikov V, Wallace J, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12(7):1990–2009CrossRefGoogle Scholar
  9. Bryan F, Danabasoglu G, Nakashiki N, Yoshida Y, Kim DH, Tsutsui J, Doney SC (2006) Response of the north atlantic thermohaline circulation and ventilation to increasing carbon dioxide in ccsm3. J Clim 19:2382–2397CrossRefGoogle Scholar
  10. Cabanes C, Lee T, Fu LL (2008) Mechanisms of interannual variations of the meridional overturning circulation of the North Atlantic Ocean. J Phys Oceanogr 38:467–480CrossRefGoogle Scholar
  11. Clarke RA (1984) Transport through the cape farewell-flemish cap section. Rapp P V Reun Cons Int Explor Mer 185:120–130Google Scholar
  12. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277CrossRefGoogle Scholar
  13. Cubasch U, Voss R, Hegerl GC, Waszkewitz J, Crowley TJ (1997) Simulation of the influence of solar radiation variations on the global climate with an ocean-atmosphere general circulation model. Clim Dyn 13:757–767CrossRefGoogle Scholar
  14. Ubasch U, Meehl G, Boer G, Stouffer R, Dix M, Noda A, Senior C, Raper S, Yap K (2001) Projections of future climate change. In: Houghton JT et al. (eds) Climate change 2001: the scientific basis: contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, pp 525–582Google Scholar
  15. Curry R, McCartney M, Joyce T (1998) Oceanic transport of subpolar climate signals to mid-depth subtropical waters. Nature 391:575–577CrossRefGoogle Scholar
  16. Delworth T, Dixon K (2006) Have anthropogenic aerosols delayed a greenhouse gas-induced weakening of the north atlantic thermohaline circulation? grl 33:L02,606, doi: 10.1029/2005GL024,980 CrossRefGoogle Scholar
  17. Delworth T, Stouffer R, Dixon K, Spelman MJ, Knutson T, Broccoli A, Kushner P, Wetherald R (2002) Review of simulations of climate variability and change with the GFDL R30 coupled climate model. cd 19:555–574Google Scholar
  18. Delworth TL, Greatbatch RJ (2000) Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J Clim 13:1481–1495CrossRefGoogle Scholar
  19. Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16:661–676CrossRefGoogle Scholar
  20. Delworth TL, Manabe S, Stouffer RJ (1993) Interdecadal variations in the thermohaline circulation in a coupled ocean-atmosphere model. J Clim 6:1993–2011CrossRefGoogle Scholar
  21. Deshayes J, Frankignoul C (2008) Simulated variability of the circulation in the north atlantic from 1953 to 2003. J Clim 21:4919–4933CrossRefGoogle Scholar
  22. Dickson R, Lazier J, Meincke J, Rhines P, Swift J (1996) Long-term coordinated changes in the convective activity of the north atlantic. Progress Oceanogr 38:241–295CrossRefGoogle Scholar
  23. Dong B, Sutton RT (2005) Mechanism of interdecadal thermohaline circulation variability in a coupled ocean-atmosphere GCM. J Clim 18:1117–1135CrossRefGoogle Scholar
  24. Dong B, Sutton RT (2007) Enhancement of ENSO variability by a weakened Atlantic thermohaline circulation in a coupled GCM. J Clim 20:4920–4939CrossRefGoogle Scholar
  25. Dong B, Sutton RT, Scaife AA (2006) Multidecadal modulation of El Niño-Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys Res Lett 33:L08,705, doi: 10.1029/2006GL025,766 Google Scholar
  26. Drijfhout S, Hazeleger W (2007) Detecting Atlantic MOC changes in an ensemble of climate change simulations. JOC 20:1571–1582Google Scholar
  27. Drijfhout SS, Hazeleger W, Selten F, Haarsma R (2008) Future changes in internal variability of the atlantic meridional overturning circulation. Clim Dyn 30:407–419, doi: 10.1007/s00,382-007-0297-y CrossRefGoogle Scholar
  28. Eden C, Greatbatch RJ (2003) A damped decadal oscillation in the North Atlantic climate system. J Clim 16:4043–4060CrossRefGoogle Scholar
  29. Eden C, Jung T (2001) North Atlantic interdecadal variability: oceanic response to the North Atlantic oscillation (1865–1997). J Clim 14:676–691CrossRefGoogle Scholar
  30. Eden C, Willebrand J (2001) Mechanism of interannual to decadal variability of the North Atlantic circulation. J Clim 14:2266–2280CrossRefGoogle Scholar
  31. Frankcombe LM, von der Heydt A, Dijkstra H (2010) North atlantic multidecadal climate variability: an investigation of dominant time scales and processes. J Clim 23(13):3626–3638, doi: 10.1175/2010JCLI3471.1 CrossRefGoogle Scholar
  32. Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–457CrossRefGoogle Scholar
  33. Gates WL (1992) AMIP: the atmosphere model intercomparison project. Technical report 7, Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, LivermoreGoogle Scholar
  34. Getzlaff J, Böning C, Eden C, Biastoch A (2005) Signal propagation related to the north atlantic overturning. Geophys Res Lett 32:L09,602, doi: 10.1029/2004GL021002 CrossRefGoogle Scholar
  35. Gleckler P, AchutaRao K, Gregory J, Santer B, Taylor K, Wigley T (2006a) Krakatoa lives: the effect of volcanic eruptions on ocean heat content and thermal expansion. Geophys Res Lett 33(17):L17,702, doi: 10.1029/2006GL026771 CrossRefGoogle Scholar
  36. Gleckler PJ, Wigley T, Santer B, Gregory J, AchutaRao K, Taylor KE (2006b) Krakatoa’s signature persists in the ocean. Nature 439:675CrossRefGoogle Scholar
  37. González-Rouco FJ, Beltrami H, Zorita E, von Storch H (2006) Simulation and inversion of borehole temperature profiles in surrogate climates: spatial distribution and surface coupling. Geophys Res Lett 33:L01,703, doi: 10.1029/2005GL024693 CrossRefGoogle Scholar
  38. González-Rouco FJ, Beltrami H, Zorita E, Stevens MB (2009) Borehole climatology: a discussion based on contributions from climate modeling. Clim Past 5:97–127Google Scholar
  39. González-Rouco JF, von Storch H, Zorita E (2003a) Deep soil temperature as proxy for surface air-temperature in a coupled model simulation of the last thousand years. Geophys Res Lett 30:2116–2119CrossRefGoogle Scholar
  40. González-Rouco JF, Zorita E, Cubasch U, von Storch H, Fisher-Bruns I, Valero F, Montavez JP, Schlese U, Legutke S (2003b) Simulating the climate since 1000 AD with the AOGCM ECHO-G. ESA SP 535:329–338Google Scholar
  41. Goosse H, Crowley T, Zorita E, Ammann C, Renssen H, Driesschaert E (2005) Modelling the climate of the last millennium: what causes the differences between simulations?. Geophys Res Lett 32:L06,710CrossRefGoogle Scholar
  42. Gouirand I, Moron V, Zorita E (2007a) Teleconnections between enso and north atlantic in an echo-g simulation of the 1000–1990 period. Geophys Res Lett 34:L06,705, doi: 10.1029/2006GL028852 CrossRefGoogle Scholar
  43. Gouirand I, Moberg A, Zorita E (2007b) Climate variability in scandinavia for the past millennium simulated by an atmosphere-ocean general circulation model. Tellus 59A:30–49CrossRefGoogle Scholar
  44. Gregory JM, Dixon KW, Stouffer RJ, Weaver AJ, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Sokolov AP, Thorpe RB (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32:L12,703, doi: 10.1029/2005GL023209 CrossRefGoogle Scholar
  45. Guemas V, Salas-Mélia D (2008) Simulation of the Atlantic meridional overturning circulation in an atmosphere-ocean global coupled model. Part I: a mechanism governing the variability of ocean ocnvection in a preindustrial experiment. Clim Dyn 31:29–48CrossRefGoogle Scholar
  46. Hansen B, Østerhus S (2000) North atlantic-nordic seas exchanges. Progress Oceanogr 45:109–208CrossRefGoogle Scholar
  47. Hasselmann K (1976) Stochastic climate models, part i: theory. Tellus 28:473–485CrossRefGoogle Scholar
  48. Hawkins E, Sutton R (2007) Variability of the atlantic thermohaline circulation described by three-dimensional empirical orthogonal functions. Clim Dyn 29:745–762CrossRefGoogle Scholar
  49. Hirschi JJM, Killworth PD, Blundell JR (2007) Subannual, seasonal, and interannual variability of the North Atlantic meridional overturning circulation. J Phys Oceanogr 37:1246–1265CrossRefGoogle Scholar
  50. Hofer D, Raible CC, Stocker TF (2011) Variations of the atlantic meridional overturning circulation in control and transient simulations of the last millennium. Clim Past 7:133–150, doi: 10.5194/cp-7-133-2011 CrossRefGoogle Scholar
  51. Jansen E, Overpeck J, Briffa K, Duplessy JC, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier W, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon and D. Qin and M. Manning and Z. Chen and M. Marquis and K.B. Averyt and M. Tignor and H.L. Miller, Cambridge University Press, CambridgeGoogle Scholar
  52. Jungclaus JH, Haak H, Latif M, Mikolajewicz U (2005) Arctic-North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18:4013–4031CrossRefGoogle Scholar
  53. Keenlyside N, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88, doi: 10.1038/nature06921 CrossRefGoogle Scholar
  54. Kerr R (2000) A North Atlantic climate pacemaker for the centuries. Science 288:1984–1986CrossRefGoogle Scholar
  55. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20,708, doi: 10.1029/2005GL024233 CrossRefGoogle Scholar
  56. Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the atlantic multidecadal oscillation. Geophys Res Lett 33:L17,706CrossRefGoogle Scholar
  57. Knutson T, Delworth T, Dixon K, Held I, Lu J, Ramaswamy V, Schwarzkopf M, Stenchikov G, Stouffer R (2006) Assessment of twentieth-century regional surface temperature trends using the gfdl cm2 coupled models. J Clim 19(9):1624–1651CrossRefGoogle Scholar
  58. Krivova N, Balmaceda L, Solanki S (2007) Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron Astrophys 467:335–346, doi: 10.1051/0004-6361:20066725 CrossRefGoogle Scholar
  59. Kushnir Y (1994) Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J Clim 7:141–157CrossRefGoogle Scholar
  60. Latif M, Botzet M, Esch M, Haak H, Hagemann S, Jungclaus J, Legutke S, Marsland S, Mikolajewicz U (2004) Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J Clim 17:1605–1614CrossRefGoogle Scholar
  61. Lean J, Beer J, Bradley R (1995) Reconstruction of solar irradiance since 1610: Implications for climate change. Geophys Res Lett 22:3195–3198CrossRefGoogle Scholar
  62. Legutke S, Maier-Reimer E (1999) Climatology of the HOPE-G global ocean general circulation model. Technical report 21, DKRZ, Hamburg, Germany, doi: 10.2312/WDCC/DKRZ_Report_No21
  63. Legutke S, Voss R (1999) The hamburg atmosphere-ocean coupled circulation model echo-g. Technical report 18, DKRZ, Hamburg, GermanyGoogle Scholar
  64. Levitus S, Burgett R, Boyer TP (1994) World Ocean Atlas 1994, vol 3, Salinity and vol 4, Temperature. Technical report, National Environmental Satellite, Data, and Information Service, Washington, DC (United States)Google Scholar
  65. Manabe S, Stouffer RJ (1994) Multiple-century response of a coupled ocean-atmosphere mocel to an increase of atmospheric carbon dioxide. J Clim 7:5–23CrossRefGoogle Scholar
  66. Marotzke J, Stone P (1995) Atmospheric transports, the thermohaline circulation, and flux adjustments in a simple coupled model. J Phys Oceanogr 25:1350–1364CrossRefGoogle Scholar
  67. Marshall JC, Schott F (1999) Open ocean convection: observations, theory and models. Rev Geophys 37-1:1–64CrossRefGoogle Scholar
  68. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  69. Mignot J, Frankignoul C (2005) The variability of the Atlantic meridional overturning circulation, the North Atlantic oscillation, and the El Niño-Southern oscillation in the Bergen climate model. J Clim 18:2361–2375CrossRefGoogle Scholar
  70. Miller R, Schmidt G, Shindell D (2006) Forced annular variations in the 20th century intergovernmental panel on climate change fourth assessment report models. J Geophys Res 111:D18,101Google Scholar
  71. Min S, Legutke S, Hense A, Kwon W (2005a) Internal variability in a 1000-yr control simulation with the coupled climate model ECHO-G -I. Near surface temperature, precipitation and sea level pressure. Tellus 57A:605–621CrossRefGoogle Scholar
  72. Min S, Legutke S, Hense A, Kwon W (2005b) Internal variability in a 1000-yr control simulation with the coupled climate model ECHO-G-II. El Niño Sourthern Oscillation and North Atlantic Oscillation. Tellus 57A:622–640CrossRefGoogle Scholar
  73. Moore GWK (2003) Gale force winds over the Irminger Sea to the east of Cape Farewell, Greenland. Geophys Res Lett 30:1894, doi: 10.1029/2003GL018,012 CrossRefGoogle Scholar
  74. Msadek R, Frankignoul C (2009) Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model. Clim Dyn 33:45–62, doi: 10.1007/s00382-008-0452-0 CrossRefGoogle Scholar
  75. Nakicenovic N, Swart R (eds) (2000) IPCC special report on emissions scenarios. Cambridge University Press, CambridgeGoogle Scholar
  76. Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grubler A, Jung TY, Kram T, Rovere ELL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner HH, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special Report on Emissions Scenarios. Cambridge University Press, CambridgeGoogle Scholar
  77. Olsen SM, Hansen B, Quadfasel D, Østerhus S (2008) Observed and modelled stability of overflow across the greenland–scotland ridge. Nature 455(7212):519–522, doi: 10.1038/nature07302 CrossRefGoogle Scholar
  78. Orsi AH, Johnson GC, Bullister JL (1999) Circulation, mixing, and production of Antarctic bottom water. Progress Oceanogr 43:55–109CrossRefGoogle Scholar
  79. Ortega P, Hawkins E, Sutton RT (2011) Processes governing the predictability of the Atlantic meridional overturning circulation in a coupled GCM. Clim Dyn (accepted), doi: 10.1007/s00382-011-1025-1
  80. Osborn TJ, Raper SCB, Briffa KR (2006) Simulated climate change during the last 1000 years: comparing the ECHO-G general circulation model with the MAGICC simple climate model. Clim Dyn 27:185–197, doi: 10.1007/s00,382-006-0129-5 CrossRefGoogle Scholar
  81. Ottera OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for atlantic multidecadal variability. Nat Geosci 3:688–694, doi: 10.1038/NGEO955 CrossRefGoogle Scholar
  82. Peng S, Robinson W, Li S, Hoerling M (2005) Tropical atlantic sst forcing of coupled north atlantic seasonal responses. J Clim 18(3):480–496CrossRefGoogle Scholar
  83. Pickart RS, Spall MA, Ribergaard MJ, Moore GWK, Milliff RF (2003) Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature 424:152–156CrossRefGoogle Scholar
  84. Rahmstorf S, Ganopolski A (1999) Long-term global warming scenarios computed with an efficient coupled climate model. Clim Change 43:353CrossRefGoogle Scholar
  85. Rind D, Shindell D, Perlwitz J, Lerner J, Lonergan P, Lean J, McLinden C (2004) The relative importance of solar and anthropogenic forcing of climate change between the maunder minimum and the present. J Clim 17:906–929CrossRefGoogle Scholar
  86. Rodwell M, Rowell D, Folland C (1999) Oceanic forcing of the wintertime north atlantic oscillation and european climate. Nature 398(6725):320–323CrossRefGoogle Scholar
  87. Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dumenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996) The atmospheric general circulation model ECHAM4: model description and simulation of present-day climate. Technical report 218, Max-Planck-Institut fuer Meterologie, Hamburg, GermanyGoogle Scholar
  88. Schaeffer M, Selten F, Opsteegh J, Goosse H (2004) The influence of ocean convection patterns on high-latitude climate projections. J Clim 17:4316–4329CrossRefGoogle Scholar
  89. Schmittner A, Latif M, Schneider B (2005) Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys Res Lett 32:L23,710, doi: 10.1029/2005GL024,368 CrossRefGoogle Scholar
  90. Schneider B, Latif M, Schmittner A (2007) Evaluation of different methods to assess model projections of the future evolution of the atlantic meridional overturning circulation. J Clim 20:2121–2132, doi: 10.1175/JCLI4128.1 CrossRefGoogle Scholar
  91. Sedláček J, Mysak LA (2009a) A model study of the little ice age and beyond: changes in ocean heat content, hydrography and circulation since 1500. Clim Dyn 33:461–475, doi: 10.1007/s00382-008-0503-6 CrossRefGoogle Scholar
  92. Sedláček J, Mysak LA (2009b) Sensitivity of sea ice to wind-stress and radiative forcing since 1500: a model study of the little ice age and beyond. Clim Dyn 32(6):817–831, doi: 10.1007/s00382-008-0406-6 CrossRefGoogle Scholar
  93. Shindell D, Schmidt G, Mann M, Rind D, Waple A (2001) Solar forcing of regional climate change during the maunder minimum. Science 294:2149–2152, doi: 10.1126/science.1064363 CrossRefGoogle Scholar
  94. Stenchikov G, Hamilton K, Stouffer R, Robock A, Ramaswamy V, Santer B, Graf H (2006) Arctic oscillation response to volcanic eruptions in the ipcc ar4 climate models. J Geophys Res 111:D07,107, doi: 10.1029/2005JD006286 CrossRefGoogle Scholar
  95. Stenchikov G, Delworth T, Ramaswamy V, Stouffer RJ, Wittenberg A, Zeng F (2009) Volcanic signals in oceans. J Geophys Res Atmos 114:D16,104, doi: 10.1029/2008JD011673 CrossRefGoogle Scholar
  96. Stendel M, Mogensen I, Christensen J (2006) Influence of various forcings on global climate in historical times using a coupled atmosphere—ocean general circulation model. Clim Dyn 26:1–15, doi: 10.1007/s00382-005-0041-4 CrossRefGoogle Scholar
  97. Stephenson D, Pavan V, Collins M, Junge M, Quadrelli R (2006) North atlantic oscillation response to transient greenhouse gas forcing and the impact on european winter climate: a cmip2 multi-model assessment. Clim Dyn 27:401–420CrossRefGoogle Scholar
  98. Stevens MB, Smerdon JE, González-Rouco JF, Stieglitz M, Beltrami H (2007) Effects of bottom boundary condition placement on subsurface heat storage: implications for climate model simulations. Geophys Res Lett 34:L02,702, doi: 10.1029/2006GL028546 CrossRefGoogle Scholar
  99. von Storch H, Zorita E, Jones JM, Dimitriev Y, Gonzalez-Rouco F, Tett SFB (2004) Reconstructing past climate from noisy data. Science 306:679–682, doi: 10.1126/science.1096109 CrossRefGoogle Scholar
  100. Sutton RT, Hodson DLR (2003) Influence of the ocean on North Atlantic climate variability 1871–1999. J Clim 16:3296–3313CrossRefGoogle Scholar
  101. Swingedouw D, Terray L, Cassou C, Voldoire A, Salas-Mélia D, Servonnat J (2010) Natural forcing of climate during the last millennium: fingerprint of solar variability. Clim Dyn 36:1349–1364. doi: 10.1007/s00382-010-0803-5 Google Scholar
  102. Talley LD (2003) Shallow, intermediate, and deep overturning components of the global heat budget. J Phys Oceanogr 33:530–560CrossRefGoogle Scholar
  103. Talley LD, Reid JL, Robbins PE (2003) Data-based meridional overturning streamfunctions for the global ocean. J Clim 16:3213–3226CrossRefGoogle Scholar
  104. Tapping KF, Boteler D, Charbonneau P, Crouch A, Manson A, Paquette H (2007) Solar magnetic activity and total irradiance since the maunder minimum. Solar Phys 246:309–326, doi: 10.1007/s11207- 007-9047-x CrossRefGoogle Scholar
  105. Thorpe RB, Gregory JM, Johns TC, Wood RA, Mitchell JFB (2001) Mechanisms determining the Atlantic thermohaline circulation response to greenhouse gas forcing in a non-flux-adjusted coupled climate model. J Clim 14:3102–3116CrossRefGoogle Scholar
  106. Timmermann A, Latif M, Voss R, Grötzner A (1998) Northern hemispheric interdecadal variability: a coupled air-sea mode. J Clim 11:1906–1931CrossRefGoogle Scholar
  107. Timmermann A, Okumura Y, An SI, Clement A, Dong B, Guilyardi E, Hu A, Jungclaus JH, Renold M, Stocker TF, Stouffer RJ, Sutton R, Xie SP, Yin J (2007) The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J Clim 20:4489–4919Google Scholar
  108. Trenberth KE, Caron JM (2001) Estimates of meridional atmosphere and ocean heat transport. Clim Dyn 14:3433–3443Google Scholar
  109. Trenberth KE, Shea DJ (1987) On the evolution of the southern oscillation. Monthly Weather Rev 115:3078–3096CrossRefGoogle Scholar
  110. Vellinga M, Wu P (2004) Low-latitude freshwater influence on centennial variability of the Atlantic thermohaline circulation. J Clim 17:4498–4511CrossRefGoogle Scholar
  111. Wallace J, Gutzler D (1981) Teleconnections in the geopotential height field during the northern hemisphere winter. Monthly Weather Rev 109:784–812CrossRefGoogle Scholar
  112. Wang Y, Lean J, Sheeley N (2005) Modeling the sun’s magnetic field and irradiance since 1713. Astrophys J 625:522–538CrossRefGoogle Scholar
  113. Weaver AH, Valcke S (1998) On the variability of the thermohaline circulation in the gfdl coupled model. J Clim 11:759–767CrossRefGoogle Scholar
  114. Wolff JO, Maier-Reimer E, Legutke S (1997) The Hamburg ocean primitive equation model. Technical report 13, DKRZ, Hamburg, GermanyGoogle Scholar
  115. Wu P, Gordon C (2002) Oceanic influence on North Atlantic climate variability. J Clim 15:1911–1925CrossRefGoogle Scholar
  116. Zorita E, González-Rouco JF, Legutke S (2003) Testing the Mann et al. (1999) approach to paleoclimate reconstructions in the context of a 1000-yr control simulation with the ECHO-G coupled climate model. J Clim 16:1378–1390CrossRefGoogle Scholar
  117. Zorita E, von Storch H, González-Rouco FJ, U Cubasch JL, Legutke S, Fischer-Bruns I, Schlese U (2004) Climate evolution in the last five centuries simulated by an atmosphere-ocean model: global temperatures, the North Atlantic Oscillation and the Late Maunder Minimum. Meteorol Z 13(4):271–289CrossRefGoogle Scholar
  118. Zorita E, González-Rouco JF, von Storch H, Montávez JP, Valero F (2005) Natural and anthropogenic modes of surface temperature variations in the last thousand years. Geophys Res Lett 32:L08,707CrossRefGoogle Scholar
  119. Zorita E, Gonzalez-Rouco F, von Storch H (2007) Comments on “testing the fidelity of methods used in proxy-based reconstructions of past climate”. J Clim 20:3693–3698CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Pablo Ortega
    • 1
    • 2
    Email author
  • Marisa Montoya
    • 1
    • 2
  • Fidel González-Rouco
    • 1
    • 2
  • Juliette Mignot
    • 3
  • Stephanie Legutke
    • 4
  1. 1.Dpto. Astrofísica y Ciencias de la Atmósfera/Instituto de Geociencias, Facultad de Ciencias FísicasUniversidad Complutense de Madrid, Ciudad UniversitariaMadridSpain
  2. 2.Instituto de Geociencias (UCM-CSIC), Facultad de Ciencias FísicasUniversidad Complutense de Madrid, Ciudad UniversitariaMadridSpain
  3. 3.IPSL/LOCEAN, UPMC/CNRS/IRD/MNHN, Université Pierre et Marie CurieParis Cedex 05France
  4. 4.Deutsches Klimarechenzentrum (DKRZ)HamburgGermany

Personalised recommendations