Climate Dynamics

, Volume 37, Issue 9–10, pp 1929–1947

Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario

  • Marcello Vichi
  • Elisa Manzini
  • Pier Giuseppe Fogli
  • Andrea Alessandri
  • Lavinia Patara
  • Enrico Scoccimarro
  • Simona Masina
  • Antonio Navarra
Article

Abstract

Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric “target” concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the projected concentration pathways of aerosol in the next decades control the evolution of surface ocean biogeochemistry in the second half of this century more than the specific pathways of atmospheric CO2 concentrations.

Keywords

Climate Projections Stabilization Ocean carbon cycle Biogeochemistry model PELAGOS ENSEMBLES 

References

  1. Alessandri A (2006) Effects of land surface and vegetation processes on the climate simulated by an atmospheric general circulation model. PhD Thesis, Bologna University Alma Mater Studiorum, 114 ppGoogle Scholar
  2. Alessandri A et al (2011) Coupling between the land surface and the changing climate (in preparation)Google Scholar
  3. Bopp L, Aumont O, Cadule P, Alvain S, Gehlen M (2005) Response of diatoms distribution to global warming and potential implications: a global model study. Geophys Res Lett 32:L19,606. doi:10.1029/2005GL023653 CrossRefGoogle Scholar
  4. Boucher O, Pham M (2002) History of sulfate aerosol radiative forcings. Geophys Res Lett 29:1308. doi:10.1029/2001GL014048 Google Scholar
  5. Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA 104(47):18866–18870. doi:10.1073/pnas.0702737104 CrossRefGoogle Scholar
  6. Coale KH, Fitzwater SE, Gordon RM, Johnson KS, Barber RT (1996) Control of community growth and export production by upwelled iron in the equatorial Pacific ocean. Nature 379:621–624CrossRefGoogle Scholar
  7. Conkright M, Garcia H, O’Brien T, Locarnini R, Boyer T, Stephens C, Antonov J (2002) World Ocean Atlas 2001, vol 4: Nutrients, vol. NOAA Atlas NESDIS 52. US Government Printing Office, WashingtonGoogle Scholar
  8. Crueger T, Roeckner E, Raddatz T, Schnur R, Wetzel P (2008) Ocean dynamics determine the response of oceanic CO2 uptake to climate change. Clim Dyn 31(2–3):151–168. doi:10.1007/s00382-007-0342-x CrossRefGoogle Scholar
  9. Danabasoglu G (2008) On multi-decadal variability of the Atlantic meridional overturning circulation in the Community Climate System Model version 3 (CCSM3). J Clim 21:5524–5544CrossRefGoogle Scholar
  10. Den Elzen MGJ, van Vuuren DP (2007) Peaking profiles for achieving long-term temperature targets with more likelihood at lower costs. Proc Natl Acad Sci USA 104:17931–17936CrossRefGoogle Scholar
  11. Denman K, Brasseur G, Chidthaisong A, Ciais P, Cox P, Dickinson R, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias P, Wofsy S, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  12. Farneti R, Vallis GK (2009) Mechanisms of interdecadal climate variability and the role of ocean–atmosphere coupling. Clim Dyn. doi:10.1007/s00382-009-0674-9 Google Scholar
  13. Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305(5682):362–366. doi:10.1126/science.1097329 CrossRefGoogle Scholar
  14. Fogli PG, Manzini E, Vichi M, Alessandri LPA, Gualdi S, Scoccimarro E, Masina S, Navarra A (2009) INGV-CMCC carbon: a carbon cycle earth system model. Tech. Rep. RP0061, CMCC, http://www.cmcc.it/publications-meetings/publications/research-papers/rp0061-ingv-cmcc-carbon-icc-a-carbon-cycle-earth-system-model
  15. Frölicher TL, Joos F (2010) Reversible and irreversible impacts of greenhouse gas emissions in multi-century projections with the NCAR global coupled carbon cycle-climate model. Clim Dyn (in press). doi:10.1007/s00382-009-0727-0
  16. Goodman PJ, Hazeleger W, de Vries P, Cane M (2005) Pathways into the Pacific equatorial undercurrent: a trajectory analysis. J Phys Oceanogr 35:2134–2151CrossRefGoogle Scholar
  17. Gruber N, Sarmiento JL (2002) Biogeochemical/physical interactions in elemental cycles. In: Robinson AR, Mccarthy JJ, Rothschild BJ (eds) Biological–physical interactions in the oceans, THE SEA, vol 12, chap 9. Wiley, New York, pp 337–399Google Scholar
  18. Gruber N, Gloor M, Mikaloff-Fletcher SE, Doney SC, Dutkiewicz S, Follows MJ, Gerber M, Jacobson AR, Joos F, Lindsay K, Menemenlis D, Mouchet A, Mueller SA, Sarmiento JL, Takahashi T (2009) Oceanic sources, sinks, and transport of atmospheric CO2. Glob Biogeochem Cycles 23:GB1005. doi:10.1029/2008GB003349 CrossRefGoogle Scholar
  19. Gu D, Philander S (1997) Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 275(5301):805CrossRefGoogle Scholar
  20. Gualdi S, Scoccimarro E, Navarra A (2008) Changes in tropical cyclone activity due to global warming: results from a high-resolution coupled general circulation model. J Clim 21(20):5204–5228CrossRefGoogle Scholar
  21. Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, van Oldenborgh GJ, Stockdale T (2009) Understanding El Niño in ocean-atmosphere general circulation models: progress and challenges. Bull Am Meteorol Soc 90(3):325–340CrossRefGoogle Scholar
  22. Hibbard K, Meehl G, Cox P, Friedlingstein P (2007) A strategy for climate change stabilization experiments. EOS 88(20):217. doi:10.1029/2007EO200002 CrossRefGoogle Scholar
  23. Houghton RA (2008) Carbon flux to the atmosphere from land-use changes: 1850–2005. In: TRENDS: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge. http://www.cdiac.ornl.gov/trends/landuse/houghton/houghton.html
  24. Johns TC, Royer J-F, Höschel I, Huebener H, Roeckner E, Manzini E, May W, Dufresne J-L, Otterå OH, van Vuuren DP, Salas y Melia D, Giorgetta M, Denvil S, Yang S, Fogli PG, Körper J, Hewitt CD (2011) Climate change under aggressive mitigation: the ENSEMBLES multi-model experiment (accepted for publication on Clim Dyn)Google Scholar
  25. Key RM, Kozyr A, Sabine CL, Lee K, Wanninkhof R, Bullister JL, Feely RA, Millero FJ, Mordy C, Peng TH (2004) A global ocean carbon climatology: results from global data analysis project (GLODAP). Glob Biogeochem Cycles 18(4):GB4031CrossRefGoogle Scholar
  26. Kiehl JT, Schneider TL, Portmann RW, Solomon S (1999) Climate forcing due to tropospheric and stratospheric ozone. J Geophys Res Atmos 104:31239–31254CrossRefGoogle Scholar
  27. Law RM, Matear RJ, Francey RJ (2008) Comment on “Saturation of the Southern Ocean CO2 sink due to recent climate change”. Science 319(5863):570. doi:10.1126/science.1149077 CrossRefGoogle Scholar
  28. Le Quéré C, Rodenbeck C, Buitenhuis ET, Conway TJ, Langenfelds R, Gomez A, Labuschagne C, Ramonet M, Nakazawa T, Metzl N, Gillett N, Heimann M (2007) Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316(5832):1735–1738. doi:10.1126/science.1136188 CrossRefGoogle Scholar
  29. Levitus S, Boyer T, Conkright M, O’Brien T, Antonov J, Stephens C, Stathoplos L, Johnson D, Gelfeld R (1998) WORLD OCEAN DATABASE 1998: vol 1: introduction, vol. NOAA Atlas NESDIS 18, 346 pp. US Gov. Printing Office, WashingtonGoogle Scholar
  30. Lovenduski NS, Gruber N, Doney SC (2008) Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Glob Biogeochem Cycles 22:GB3016. doi:10.1029/2007GB003139 CrossRefGoogle Scholar
  31. Lowe JA, Hewitt CD, van Vuuren DP, Johns TC, Stehfest E, Royer JF, van der Linden PJ (2009) New study for climate modeling, analyses, and scenarios. EOS Trans AGU 90:181–182CrossRefGoogle Scholar
  32. Lozier MS, Roussenov V, Reed MSC, Williams RG (2010) Opposing decadal changes for the North Atlantic meridional overturning circulation. Nat Geosci 3(10):728–734. doi:10.1038/ngeo947 CrossRefGoogle Scholar
  33. Lukas R, Firing E (1984) The geostrophic balance of the Pacific equatorial undercurrent. Deep Sea Res 31:61–66CrossRefGoogle Scholar
  34. Madec G, Imbard M (1996) A global ocean mesh to overcome the North Pole singularity. Clim Dyn 12:381–388CrossRefGoogle Scholar
  35. Madec G, Delecluse P, Imbard M, Levy C (1998) OPA8.1 ocean general circulation model reference manual, Notes du pole de modelisation. IPSL, France, http://www.nemo-ocean.eu/Media/Files/Doc_OPA8.1
  36. Marland G, Boden TA, Andres RJ (2008) Global, regional, and national CO2 emissions. In: TRENDS: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge. http://www.cdiac.ornl.gov/trends/emis/tre_glob.html
  37. Marti O, Braconnot P, Dufresne JL, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Codron F, de Noblet N, Denvil S, Fairhead L, Fichefet T, Foujols MA, Friedlingstein P, Goosse H, Grandpeix JY, Guilyardi E, Hourdin F, Idelkadi A, Kageyama M, Krinner G, Lévy C, Madec G, Mignot J, Musat I, Swingedouw D, Talandier C (2010) Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim Dyn 34(1):1–26. doi:10.1007/s00382-009-0640-6 CrossRefGoogle Scholar
  38. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  39. Nakicenovic N, Swart R (eds) (2000) Special report on emissions scenarios. A special report of Working Group III of the Intergovernmental Panel on Climate Change, 612 pp. Cambridge University Press, Cambridge, UK, ISBN 0521804930Google Scholar
  40. Ono T, Shiomoto A, Saino T (2008) Recent decrease of summer nutrients concentrations and future possible shrinkage of the subarctic north pacific high-nutrient low-chlorophyll region. Glob Biogeochem Cycles 22. doi: 10.1029/2007GB003092
  41. Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  42. Raven JA, Falkowski PG (1999) Oceanic sinks for atmospheric CO2. Plant Cell Environ 22:741–755CrossRefGoogle Scholar
  43. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:10.1029/2002JD002670 CrossRefGoogle Scholar
  44. Rodgers KB, Blanke B, Madec G, Aumont O, Ciais P, Dutay J-C (2003) Extratropical sources of equatorial Pacific upwelling in an OGCM. Geophys Res Lett 30(2):1084. doi:10.1029/2002GL016003 CrossRefGoogle Scholar
  45. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part I: model description. Rep. No. 349, Max-Planck-Institut für Meteorologie, Hamburg, 127 ppGoogle Scholar
  46. Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19:3771–3791CrossRefGoogle Scholar
  47. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305(5682):367–371. doi:10.1126/science.1097403 CrossRefGoogle Scholar
  48. Sarmiento JL, Gruber N (2006) Ocean biogeochemical dynamics, Princeton University Press, Princeton, 529 ppGoogle Scholar
  49. Sarmiento J, Hughes T, Stouffer R, Manabe S (1998) Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393:245–249CrossRefGoogle Scholar
  50. Sarmiento JL, Slater R, Barber R, Bopp L, Doney SC, Hirst AC, Kleypas J, Matear R, Mikolajewicz U, Monfray P, Soldatov V, Spall SA, Stouffer R (2004) Response of ocean ecosystems to climate warming. Glob Biogeochem Cycles 18:3003CrossRefGoogle Scholar
  51. Schmittner A, Latif M, Schneider B (2005) Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys Res Lett 32(23). doi: 10.1029/2005GL024368
  52. Schneider B, Bopp L, Gehlen M, Segschneider J, Frölicher TL, Cadule P, Friedlingstein P, Doney SC, Behrenfeld MJ, Joos F (2008) Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models. Biogeosciences 5:597–614CrossRefGoogle Scholar
  53. Sloyan B, Johnson G, Kessler W (2003) The Pacific Cold Tongue: a pathway for interhemispheric exchange. J Phys Oceanogr 33:1027–1043CrossRefGoogle Scholar
  54. Steinacher M, Joos F, Frölicher TL, Bopp L, Cocco V, Cadule P, Doney SC, Gehlen M, Lindsay K, Moore JK, Schneider B, Segschneider J (2010) Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7:979–1005CrossRefGoogle Scholar
  55. Stouffer JR, Weaver AJ, Eby M (2004) A method for obtaining pre-twentieth century initial conditions for use in climate change studies. Clim Dyn 23:327–339. doi:10.1007/s00382-004-0446-5 CrossRefGoogle Scholar
  56. Takahashi T, Sutherland SC, Kozyr A (2009) Global Ocean surface water partial pressure of CO2 database: measurements performed during 1968–2008 (Version 2008). ORNL/CDIAC-152, NDP-088r. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge. doi: 10.3334/CDIAC/otg.ndp088r
  57. Timmermann R, Goosse H, Madec G, Fichefet T, Etheb C, Duliere V (2005) On the representation of high latitude processes in the ORCA-LIM global coupled sea ice ocean model. Ocean Modell 8:175–201CrossRefGoogle Scholar
  58. Toggweiler JR, Russell J (2008) Ocean circulation in a warming climate. Nature 451:286–288. doi:10.1038/nature06590 CrossRefGoogle Scholar
  59. Uppala S, Kallberg P, Simmons A, Andrae U, da Costa Bechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G, Li X, Onogi K, Saarinen S, Sokka N, Allan R, Andersson E, Arpe K, Balmaseda M, Beljaars A, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins B, Isaksen L, Janssen P, Jenne R, McNally A, Mahfouf J-F, Morcrette J-J, Rayner N, Saunders R, Simon P, Sterl A, Trenberth K, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteor Soc 131:2961–3012. doi:10.1256/qj.04.17 CrossRefGoogle Scholar
  60. Valcke S (2006) OASIS3 User Guide (prism_2-5), PRISM Report No 2, 6th edn. CERFACS, Tolouse, 64 ppGoogle Scholar
  61. van Vuuren D, den Elzen M, Lucas P, Eickhout B, Strengers B, van Ruijven B, Wonink S, van Houdt R (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Change 23:5–7. doi:10.1007/s/10584-006-9172-9 Google Scholar
  62. Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340. doi:10.1175/JCLI4258.1 CrossRefGoogle Scholar
  63. Vecchi GA, Soden BJ (2008) Examining the tropical pacific’s response to global warming. EOS 89(9):81–83CrossRefGoogle Scholar
  64. Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical pacific atmospheric circulation due to anthropogenic forcing. Nature 441:73–76. doi:10.1038/nature04744 CrossRefGoogle Scholar
  65. Vichi M, Masina S (2009) Skill assessment of the PELAGOS global ocean biogeochemistry model over the period 1980–2000. Biogeosciences 6:3511–3562CrossRefGoogle Scholar
  66. Vichi M, Masina S, Navarra A (2007a) A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part II: numerical simulations. J Mar Syst 64:110–134CrossRefGoogle Scholar
  67. Vichi M, Pinardi N, Masina S (2007b) A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: theory. J Mar Syst 64:89–109CrossRefGoogle Scholar
  68. Vichi M, Masina S, Nencioli F (2008) A process-oriented model study of equatorial Pacific phytoplankton: the role of iron supply and tropical instability waves. Prog Oceanogr 78:147–162. doi:10.1016/j.pocean.2008.04.003 CrossRefGoogle Scholar
  69. Volk T, Hoffert MI (1985) Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations archean to present, Geophysical monograph series, vol 32. AGU, Washington D. C, pp 99–110Google Scholar
  70. Wanninkhof R (1992) Relationship between windspeed and gas exchange over the ocean. J Geophys Res 97:7373–7382CrossRefGoogle Scholar
  71. Weisberg RH, Qiao Lin (2000) Equatorial upwelling in the Central Pacific estimated from moored velocity profilers. J Phys Oceanogr 30:105–124CrossRefGoogle Scholar
  72. Zeebe RE, Wolf-Gladrow DA (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Oceanography Book Series, vol 65, Elsevier, Amsterdam, 346 ppGoogle Scholar
  73. Zeng N, Mariotti A, Wetzel P (2004) Terrestrial mechanisms of interannual CO2 variability. Glob Biogeochem Cycles 19:2539–2558Google Scholar
  74. Zickfeld K, Fyfe JC, Eby M, Weaver AJ (2008) Comment on "saturation of the Southern Ocean CO2 sink due to recent climate change". Science 319(5863):570. doi:10.1126/science.1146886 Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Marcello Vichi
    • 1
    • 2
  • Elisa Manzini
    • 1
    • 2
    • 3
  • Pier Giuseppe Fogli
    • 1
  • Andrea Alessandri
    • 1
    • 5
  • Lavinia Patara
    • 1
    • 4
  • Enrico Scoccimarro
    • 2
  • Simona Masina
    • 1
    • 2
  • Antonio Navarra
    • 1
    • 2
  1. 1.Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC)BolognaItaly
  2. 2.Istituto Nazionale di Geofisica e VulcanologiaBolognaItaly
  3. 3.Max Planck Institute for MeteorologyHamburgGermany
  4. 4.Leibniz Institute of Marine Sciences (IFM-GEOMAR)KielGermany
  5. 5.ENEARomeItaly

Personalised recommendations