Advertisement

Climate Dynamics

, Volume 37, Issue 11–12, pp 2289–2301 | Cite as

Simulated variations of eolian dust from inner Asian deserts at the mid-Pliocene, last glacial maximum, and present day: contributions from the regional tectonic uplift and global climate change

  • Zhengguo Shi
  • Xiaodong LiuEmail author
  • Zhisheng An
  • Bingqi Yi
  • Ping Yang
  • Natalie Mahowald
Article

Abstract

Northern Tibetan Plateau uplift and global climate change are regarded as two important factors responsible for a remarkable increase in dust concentration originating from inner Asian deserts during the Pliocene–Pleistocene period. Dust cycles during the mid-Pliocene, last glacial maximum (LGM), and present day are simulated with a global climate model, based on reconstructed dust source scenarios, to evaluate the relative contributions of the two factors to the increment of dust sedimentation fluxes. In the focused downwind regions of the Chinese Loess Plateau/North Pacific, the model generally produces a light eolian dust mass accumulation rate (MAR) of 7.1/0.28 g/cm2/kyr during the mid-Pliocene, a heavier MAR of 11.6/0.87 g/cm2/kyr at present, and the heaviest MAR of 24.5/1.15 g/cm2/kyr during the LGM. Our results are in good agreement with marine and terrestrial observations. These MAR increases can be attributed to both regional tectonic uplift and global climate change. Comparatively, the climatic factors, including the ice sheet and sea surface temperature changes, have modulated the regional surface wind field and controlled the intensity of sedimentation flux over the Loess Plateau. The impact of the Tibetan Plateau uplift, which increased the areas of inland deserts, is more important over the North Pacific. The dust MAR has been widely used in previous studies as an indicator of inland Asian aridity; however, based on the present results, the interpretation needs to be considered with greater caution that the MAR is actually not only controlled by the source areas but the surface wind velocity.

Keywords

Asian dust Tibetan Plateau uplift Climate change Pliocene Paleoclimate simulation 

Notes

Acknowledgments

We thank the two anonymous reviewers for their constructive comments and insightful suggestions that help greatly improve the earlier manuscripts. This work was jointly supported by Natural Science Foundation of China (40825008, 41075067), National Basic Research Program of China (2010CB833406), and US National Science Foundation under grant ATM-0803779.

References

  1. Alfaro SC, Gaudichet A, Gomes L, Maille M (1997) Modeling the size distribution of a soil aerosol produced by sandblasting. J Geophys Res 102:11239–11249CrossRefGoogle Scholar
  2. An Z-S (2000) The history and variability of the East Asian paleomonsoon climate. Quat Sci Rev 19:171–187CrossRefGoogle Scholar
  3. An Z-S, Kukla G, Porter SC, Xiao J-L (1991) Late quaternary dust flow on the Chinese Loess Plateau. Catena 18:125–132CrossRefGoogle Scholar
  4. An Z-S, Kutzbach JE, Prell WL, Porter SC (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since late Miocene times. Nature 411:62–66CrossRefGoogle Scholar
  5. Andersen KK, Armengaud A, Genthon C (1998) Atmospheric dust under glacial and interglacial conditions. Geophys Res Lett 25(13):2281–2284CrossRefGoogle Scholar
  6. Arimoto R (2001) Eolian dust and climate: relationships to sources, tropospheric chemistry, transport and deposition. Earth Sci Rev 54:29–42CrossRefGoogle Scholar
  7. Bonan G, Levis S, Kergoat L, Oleson K (2002) Landscapes as patches of plant functional types: an integrating concept for climate and ecosystem models. Glob Biogeochem Cycle 16(2):1021. doi: 10.1029/2000GB001360
  8. Burbank DW, Derry LA, France-Lanord C (1993) Reduced Himalayan sediment production 8 Myr ago despite an intensified monsoon. Nature 364:48–50CrossRefGoogle Scholar
  9. Claquin T, Roeland C, Kohfeld KE, Harrison SP, Tegen I, Prentice IC, Balkanski Y, Bergametti G, Hansson M, Mahowald N, Rohde H, Schulz M (2003) Radiative forcing of climate by ice-age atmospheric dust. Clim Dyn 20:193–202Google Scholar
  10. Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Kiehl JT, Briegleb B, Bitz C, Lin S-L, Zhang M, Dai Y (2004) Description of the NCAR community atmosphere model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, p 226Google Scholar
  11. Collins W, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS et al (2006) The community climate system model: CCSM3. J Clim 19:2122–2143CrossRefGoogle Scholar
  12. Delmonte B, Petit JR, Andersen KK, Basile-Doelsch I, Maggi V, Lipenkov VY (2004) Dust size evidence for opposite regional atmospheric circulation changes over east Antarctica during the last climatic transition. Clim Dyn 23:427–438CrossRefGoogle Scholar
  13. Dowsett HJ, Robinson MM, Foley KM (2009) Pliocene three-dimensional global ocean temperature reconstruction. Clim Past 5:769–783CrossRefGoogle Scholar
  14. Duce R, Liss PS, Merrill JT, Atlas EL, Buat-Menard P (1991) The atmospheric input of trace species to the world ocean. Glob Biochem Cycle 5:193–259CrossRefGoogle Scholar
  15. Fecan F, Marticorena B, Bergametti G (1999) Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Ann Geophys 17:149–157Google Scholar
  16. Fluteau F, Ramstein G, Besse J (1999) Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model. J Geophys Res 104:11995–12018CrossRefGoogle Scholar
  17. Ginoux P, Chin M, Tegen I, Prospero JM, Holben B, Dubovik O, Lin SJ (2001) Sources and distributions of dust aerosols simulated with the GOCART model. J Geophys Res 106:20255–20273CrossRefGoogle Scholar
  18. Gong S-L, Zhang X-Y, Zhao T-L, Zhang X-B, Barrie LA, McKendry IG, Zhao CS (2006) A simulated climatology of Asian dust aerosol and its trans-pacific transport. Part II: interannual variability and climate connections. J Clim 19:104–122CrossRefGoogle Scholar
  19. Guo Z-T, Ruddiman WF, Hao Q, Wu H, Qiao Y, Zhu R, Peng S, Wei J, Yuan B, Liu T (2002) Onset of Asian desertification by 22 Myr ago inferred from loess deposit in China. Nature 416:159–163CrossRefGoogle Scholar
  20. Han Z, Wang T, Yan C, Liu Y, Liu L, Li A, Du H (2010) Changes trends for desertified lands in the Horqin sandy land at the beginning of the twenty-first century. Environ Earth Sci 59:1749–1757CrossRefGoogle Scholar
  21. Harrison SP, Kohfeld KE, Reolandt C, Claquin T (2001) The role of dust in climate changes today, at the last glacial maximum and in the future. Earth Sci Rev 54:43–80CrossRefGoogle Scholar
  22. Haywood AM, Valdes PJ, Sellwood BW (2000) Global scale palaeoclimate reconstruction of the middle Pliocene climate using the UKMO GCM: initial results. Glob Planet Chang 25:239–256CrossRefGoogle Scholar
  23. Hoose C, Lohmann U, Erdin R, Tegen I (2008) The global influence of dust mineralogical composition on heterogeneous ice nucleation in mixed-phase clouds. Environ Res Lett 3. doi: 10.1088/1748-9326/3/2/025003
  24. Hurrell JW, Hack JJ, Shea D, Caron JM, Rosinski J (2008) A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. J Clim 21:5145–5153CrossRefGoogle Scholar
  25. Iversen JD, White BR (1982) Saltation threshold on Earth, Mars and Venus. Sedimentology 29:111–119CrossRefGoogle Scholar
  26. Joussaume S (1990) Three-dimensional simulation of the atmospheric cycle of desert dust particles using a general circulation model. J Geophys Res 95(D2):1909–1941CrossRefGoogle Scholar
  27. Joussaume S, Taylor KE (1995) Status of the Paleoclimate modeling intercomparison project (PMIP). In: Proceedings of the first international AMIP scientific conference. WCRP Report, pp 425–430Google Scholar
  28. Kohfeld KE, Harrison SP (2001) DIRTMAP: the geological record of dust. Earth Sci Rev 54:81–114CrossRefGoogle Scholar
  29. Kohfeld KE, Harrison SP (2003) Glacial-interglacial changes in dust deposition on the Chinese Loess Plateau. Quat Sci Rev 22:1859–1878CrossRefGoogle Scholar
  30. Kutzbach JE, Prell WL, Ruddiman WF (1993) Sensitivity of Eurasian climate to surface uplift of Tibetan plateau. J Geol 101:177–190CrossRefGoogle Scholar
  31. Laurent B, Marticorena B, Bergametti G, Chazette P, Maignan F, Schmechtig C (2005) Simulation of the mineral dust emission frequencies from desert areas of China and Mongolia using an aerodynamic roughness length map derived from the POLDER/ADEOS 1 surface products. J Geophys Res 110:D18S04. doi: 10.1029/2004JD005013
  32. Laurent B, Marticorena B, Bergametti G, Mei F (2006) Modeling mineral dust emissions from Chinese and Mongolian deserts. Glob Planet Chang 52:121–141CrossRefGoogle Scholar
  33. Li G, Chen J, Ji J, Yang J, Conway TM (2009) Natural and anthropogenic sources of East Asian dust. Geology 37(8):727–730CrossRefGoogle Scholar
  34. Liu T-S (1985) Loess and the environment. China Ocean, BeijingGoogle Scholar
  35. Liu XD, Yin Z-Y (2002) Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr Palaeoclim Palaeoecol 183:223–245CrossRefGoogle Scholar
  36. Liu XD, Yin Z-Y, Zhang X-Y, Yang X-C (2004) Analyses of the spring dust storm frequency of northern China in relation to antecedent and concurrent wind, precipitation, vegetation, and soil moisture conditions. J Geophys Res 109:D16210. doi: 10.1029/2004JD004615 CrossRefGoogle Scholar
  37. Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–737CrossRefGoogle Scholar
  38. Lu H, Wang X, Li L (2010) Aeolian sediment evidence that global cooling has driven late Cenozoic stepwise aridification in central Asia. In: Clift PD, Tada R, Zheng H (eds) Monsoon evolution and tectonics—climate linkage in Asia, vol 342. Geological Society, London, Special Publications, pp 29–44Google Scholar
  39. Luo C, Mahowald N, del Corral J (2003) Sensitivity study of meteorological parameters on mineral aerosol mobilization, transport, and distribution. J Geophys Res 108(D15):4447. doi: 10.1029/2003JD003483 Google Scholar
  40. Mahowald N, Kohfeld K, Hansson M, Balkanski Y, Harrison SP, Prentice IC, Schulz M, Rodhe H (1999) Dust sources and deposition during the last glacial maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments. J Geophys Res 104(D13):15895–15916CrossRefGoogle Scholar
  41. Mahowald N, Muhs DR, Levis S, Rasch PJ, Yoshioka M, Zender CS, Luo C (2006a) Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J Geophys Res 111:D10202. doi: 10.1029/2005JD006653 CrossRefGoogle Scholar
  42. Mahowald N, Yoshioka M, Collins W, Conley A, Fillmore D, Coleman D (2006b) Climate response and radiative forcing from mineral aerosols during the glacial maximum, pre-industrial, current and doubled-carbon dioxide climates. Geophys Res Lett 33:L20705. doi: 10.1029/2006GL026126 CrossRefGoogle Scholar
  43. Mahowald N, Engelstaedter S, Luo C, Sealy A, Artaxo P, Benitez-Nelson C et al (2009) Atmospheric iron deposition: global distribution, variability, and human perturbations. Annu Rev Mar Sci 1:245–278CrossRefGoogle Scholar
  44. Manabe S, Terpstra TB (1974) The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J Atmos Sci 31:3–42CrossRefGoogle Scholar
  45. Marticorena B, Bergametti G (1995) Modeling the atmospheric dust cycle. Part 1: design of a soil-derived dust emission scheme. J Geophys Res 100:16415–16430CrossRefGoogle Scholar
  46. Martin JH (1990) Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5:1–13CrossRefGoogle Scholar
  47. Miller R, Tegen I (1998) Climate response to soil dust aerosols. J Climate 11:3247–3267CrossRefGoogle Scholar
  48. Miller R, Tegen I, Perlwitz J (2004) Surface radiative forcing by soil dust aerosols and the hydrologic cycle. J Geophys Res 109:D04203. doi: 10.1029/2003JD004085 CrossRefGoogle Scholar
  49. Molnar P, Stock JM (2009) Slowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics 28. doi: 10.1029/2008TC002271
  50. Molnar P, Boos WR, Battisti DS (2010) Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. Annu Rev Earth Planet Sci 38:77–102CrossRefGoogle Scholar
  51. Nugteren G, Vandenberghe J (2004) Spatial climatic variability on the central loess plateau (China) as recorded by grain size for the last 250 kyr. Glob Planet Chang 41:185–206CrossRefGoogle Scholar
  52. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM et al (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436CrossRefGoogle Scholar
  53. Porter SC, An Z (1995) Correlation between climate events in the North Atlantic and China during the last glaciations. Nature 375:305–308CrossRefGoogle Scholar
  54. Prell WL, Kutzbach JE (1992) Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature 360:647–652CrossRefGoogle Scholar
  55. Qiang X, An ZS, Song YG et al (2011) New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago. Sci China (Earth Sci) 54:136–144CrossRefGoogle Scholar
  56. Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294:2119–2124CrossRefGoogle Scholar
  57. Ramstein G, Fluteau F, Besse J, Joussaume S (1997) Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature 386:788–795CrossRefGoogle Scholar
  58. Rasch P, Collins W, Eaton B (2001) Understanding the Indian Ocean experiment (INDOEX) aerosol distributions with an aerosol assimilation. J Geophys Res 106(D7):7337–7355CrossRefGoogle Scholar
  59. Rasch PJ, Coleman DB, Mahowald N, Williamson DL, Lin S, Boville BA, Hess P (2006) Characteristics of atmospheric transport using three numerical formulations for atmospheric dynamics in a single GCM framework. J Clim 19:2243–2266CrossRefGoogle Scholar
  60. Rea DK (1994) The paleoclimatic record provided by eolian deposition in the deep sea: the geologic history of wind. Rev Geophys 32(2):159–195CrossRefGoogle Scholar
  61. Rea DK, Snoeckx H, Joseph LP (1998) Late Cenozoic aeolian deposition in the north Pacific: Asian drying, Tibetan uplift, and cooling of the Northern Hemisphere. Paleoceanography 13:215–224CrossRefGoogle Scholar
  62. Reddy MS, Boucher O, Bellouin N, Schulz M, Balkanski Y, Dufresne J, Pham M (2005) Estimates of global multicomponent aerosol optical depth and direct radiative perturbation in the laboratoire de meteorologie dynamique general circulation model. J Geophys Res 110:D10S16. doi: 10.1029/2004JD004757
  63. Roe G (2009) On the interpretation of Chinese loess as a paleoclimate indicator. Quat Res 71:150–161CrossRefGoogle Scholar
  64. Rosenfeld D (2000) Suppression of rain and snow by urban and industrial air pollution. Science 287:1793–1796CrossRefGoogle Scholar
  65. Ruddiman WF, Kutzbach JE (1989) Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American west. J Geophys Res 94:18409–18427CrossRefGoogle Scholar
  66. Shackleton RM, FRS, Chang C (1988) Cenozoic uplift and deformation of the Tibetan Plateau: the geomorphological evidence. Phil Trans R Soc Lond 327:365–377CrossRefGoogle Scholar
  67. Spicer RA, Harris NBW, Widdowson M, Herman AB, Guo SX, Valdes PJ, Wolfe JA, Kelley SP (2003) Constant elevation of southern Tibet over the past 15 million years. Nature 421:622–624CrossRefGoogle Scholar
  68. Sun YB, An ZS (2005) Late Pliocene-Pleistocene changes in mass accumulation rates of eolian deposits on the central Chinese Loess Plateau. J Geophys Res 110:D23101. doi: 10.1029/2005JD006064 CrossRefGoogle Scholar
  69. Sun J, Ye J, Wu W, Ni X, Bi S, Zhang Z, Liu W, Meng J (2010) Late Oligocene–Miocene mid-latitude aridification and wind patterns in the Asian interior. Geology 38:515–518CrossRefGoogle Scholar
  70. Tegen I (2003) Modeling soil dust aerosol in the climate system: an overview. Quart Sci Rev 22:1821–1834CrossRefGoogle Scholar
  71. Tegen I, Lacis A (1996) Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J Geophys Res 101:19237–19244CrossRefGoogle Scholar
  72. Tegen I, Harrison SP, Kohfeld KE, Werner M (2001) Dust deposition and aerosols in the last glacial maximum and their climate effects. Nova Acta Leopoldina NF 88(331):71–78Google Scholar
  73. Turner S, Hawkesworth C, Liu JQ, Rogers N, Kelley S, Calsteren PV (1993) Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature 364:50–54CrossRefGoogle Scholar
  74. Unnerstad L, Hansson M (2001) Simulated airborne particle size distributions over Greenland during last glacial maximum. Geophys Res Lett 28(2):287–290CrossRefGoogle Scholar
  75. Wang L, Lu H, Wu N, Li J, Pei Y, Tong G, Peng S (2006) Palynological evidence for late Miocene-Pliocene vegetation evolution recorded in the red clay sequence of the central Chinese Loess Plateau and implication for palaeoenvironmental change. Palaeogeogr Palaeoclim Palaeoecol 241:118–128CrossRefGoogle Scholar
  76. Werner M, Tegen I, Harrison SP, Kohfeld KE, Balkanski Y, Prentice IC, Rodhe H, Roelandt C (2002) Seasonal and interannual variability of the mineral dust cycle under present and glacial climate conditions. J Geophys Res 107. doi: 10.1029/2001JD002365
  77. Xie P, Arkin PA (1997) Global precipitation: a 17-years monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteor Soc 78:2539–2558CrossRefGoogle Scholar
  78. Zender C, Bian H, Newman D (2003) Mineral dust entrainment and deposition (DEAD) model: description and 1990s dust climatology. J Geophys Res 108:4416. doi: 10.1029/2002JD002775 CrossRefGoogle Scholar
  79. Zhao T-L, Gong S-L, Zhang X-Y, Blanchet J-P, McKendry IG, Zhou Z-J (2006) A simulated climatology of Asian dust aerosol and its trans-pacific transport. Part I: mean climate and validation. J Clim 19:88–103CrossRefGoogle Scholar
  80. Zheng H-B, Powell CM, An Z, Zhou J, Dong G (2000) Pliocene uplift of the northern Tibetan Plateau. Geology 28:715–718CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Zhengguo Shi
    • 1
  • Xiaodong Liu
    • 1
    Email author
  • Zhisheng An
    • 1
  • Bingqi Yi
    • 2
  • Ping Yang
    • 2
  • Natalie Mahowald
    • 3
  1. 1.State Key Laboratory of Loess Quaternary Geology (SKLLQG), Institute of Earth EnvironmentChinese Academy of SciencesXi’anChina
  2. 2.Texas A&M UniversityCollege StationUSA
  3. 3.Cornell UniversityIthacaUSA

Personalised recommendations