Climate Dynamics

, Volume 38, Issue 5–6, pp 929–949 | Cite as

Atlantic Multidecadal Oscillation and Northern Hemisphere’s climate variability

  • Marcia Glaze Wyatt
  • Sergey Kravtsov
  • Anastasios A. Tsonis
Article

Abstract

Proxy and instrumental records reflect a quasi-cyclic 50–80-year climate signal across the Northern Hemisphere, with particular presence in the North Atlantic. Modeling studies rationalize this variability in terms of intrinsic dynamics of the Atlantic Meridional Overturning Circulation influencing distribution of sea-surface-temperature anomalies in the Atlantic Ocean; hence the name Atlantic Multidecadal Oscillation (AMO). By analyzing a lagged covariance structure of a network of climate indices, this study details the AMO-signal propagation throughout the Northern Hemisphere via a sequence of atmospheric and lagged oceanic teleconnections, which the authors term the “stadium wave”. Initial changes in the North Atlantic temperature anomaly associated with AMO culminate in an oppositely signed hemispheric signal about 30 years later. Furthermore, shorter-term, interannual-to-interdecadal climate variability alters character according to polarity of the stadium-wave-induced prevailing hemispheric climate regime. Ongoing research suggests mutual interaction between shorter-term variability and the stadium wave, with indication of ensuing modifications of multidecadal variability within the Atlantic sector. Results presented here support the hypothesis that AMO plays a significant role in hemispheric and, by inference, global climate variability, with implications for climate-change attribution and prediction.

Keywords

Climate indices Teleconnections AMO NAO ENSO PDO 

References

  1. Alexander MA, Deser C (1995) A mechanism for the recurrence of wintertime midlatitude SST anomalies. J Phys Oceanogr 25:122–137CrossRefGoogle Scholar
  2. Beamish RJ, Neville CM, Cass AJ (1997) Production of Fraser River sockeye salmon (Oncorhynchus nerka) in relation to decadal-scale changes in the climate and the ocean. Can J Fish Aquat Sci 56:516–526CrossRefGoogle Scholar
  3. Beckers J, Rixen M (2003) EOF calculations and data filling from incomplete oceanographic data sets. J Atmos Ocean Technol 20:1839–1856. doi:10.1175/1520-0426(2003) CrossRefGoogle Scholar
  4. Bell GD, Halpert MS (1995) Atlas of intraseasonal and interannual variability, 1986–1993. NOAA Atlas no. 12. Climate Prediction Center, NOAA/NWS/NMC, Washington DC. Request copy via e-mail from Gerald Bell at wd52gb@hp32.wwb.noaa.govGoogle Scholar
  5. Bjerknes J (1964) Atlantic air–sea interaction. Advances in geophysics 10. Academic Press, New York, pp 1–82Google Scholar
  6. Black D, Peterson LC, Overpeck JT, Kaplan A, Evans MN, Kashgarian M (1999) Eight centuries of North Atlantic Ocean atmosphere variability. Science 286:1709–1713. doi:10.1126/science.286.5445.1709 CrossRefGoogle Scholar
  7. Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Blade I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009CrossRefGoogle Scholar
  8. Broomhead DS, King GP (1986) Extracting qualitative dynamics from experimental data. Phys D 20:217–236CrossRefGoogle Scholar
  9. Bryden H, Longworth HR, Cunningham SA (2005) Slowing of the Atlantic meridional overturning circulation at 25°N. Nature 438:655–657. doi:10.1038/nature04385 CrossRefGoogle Scholar
  10. Ceballos LI, Di Lorenzo E, Hoyos CD, Schneider N, Taguchi B (2009) North Pacific Gyre Oscillation synchronizes climate fluctuations in the eastern and western boundary systems. J Clim 22:5163–5174CrossRefGoogle Scholar
  11. Chang P, Zhang Li, Saravanan R, Vimont DJ, Chiang JCH, Link Ji, Seidel H, Tippett MK (2007) Pacific meridional mode and El Niño-Southern Oscillation. Geophys Res Lett 34:L16608. doi:10.1029/2007GL030302 CrossRefGoogle Scholar
  12. Chhak K, Di Lorenzo E (2007) Decadal variations in the California current upwelling cells. Geophys Res Lett 314:L14604. doi:10.1029/2007GL030203 CrossRefGoogle Scholar
  13. Chiang JCH, Vimont D (2004) Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability. J Clim 17:4143–4158. doi:10.1175/JCLI4953.1 CrossRefGoogle Scholar
  14. Cubasch U, Voss R (2000) The influence of total solar irradiance on climate. Space Sci Rev 94:185–198. doi:10.1023/A:1026719322987 CrossRefGoogle Scholar
  15. Czaja A, Frankignoul C (2002) Observed impact of atlantic SST anomalies on the north atlantic oscillation. J Clim 15:606–623CrossRefGoogle Scholar
  16. Czaja A, Marshall J (2001) Observations of atmosphere-ocean coupling in the North Atlantic. OJR Meteorol Soc 27:1893–1916. doi:10.1002/qj.49712757603 CrossRefGoogle Scholar
  17. Delworth TL, Dixon KW (2006) Have anthropogenic aerosols delayed a greenhouse gas-induced weakening of the North Atlantic thermohaline circulation? Geophys Res Lett 33:L02606. doi:10.1029/2005GL024980 CrossRefGoogle Scholar
  18. Delworth TL, Greatbatch RJ (2000) Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J Clim 13:1481–1495CrossRefGoogle Scholar
  19. Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16:661–676. doi:10.1007/s003820000075 CrossRefGoogle Scholar
  20. Delworth TL, Manabe S, Stouffer RJ (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J Clim 6:1993–2011CrossRefGoogle Scholar
  21. Delworth TL, Manabe S, Stouffer RJ (1997) Multidecadal climate variability in the Greenland Sea and surrounding regions: a coupled mode simulation. Geophys Res Lett 24(3):96GL03927:257–260Google Scholar
  22. Delworth TL, Zhang R, Mann ME (2007) Decadal to centennial variability of the Atlantic from observations and models. In: Schmittner A, Chiang JCH, Hemming SR (eds) Past and future changes of the oceans meridional overturning circulation: mechanisms and impacts. Geophysical monograph series 173, American geophysical union, pp 131–148Google Scholar
  23. Deser C, Blackmon ML (1995) On the relationship between tropical and north pacific sea surface temperature variations. J Clim 8:1677–1680CrossRefGoogle Scholar
  24. Di Lorenzo E, Schneider N, Cobb KM, Franks PJS, Chhak K, Miller AJ, McWilliams JC, Bograd SJ, Arango H, Curchitser E, Powell TM (2008) North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys Res Lett 35:L08607. doi:10.1029/2007GL032838 CrossRefGoogle Scholar
  25. Di Lorenzo E, Fiechter J, Schneider N, Miller AJ, Franks PJS, Bograd SJ, Moore A, Thomas A, Crawford W, Pena A, Herman AJ (2009) Nutrient and salinity decadal variations in the central and eastern North Pacific. Geophys Res Lett 36:L14601. doi:10.1029/2009GL038261 CrossRefGoogle Scholar
  26. Di Lorenzo E, Cobb KM, Furtado JC, Schneider N, Anderson BT, Bracco A, Alexander MA, Vimont DJ (2010) Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nat Geosci 3(11):762–765. doi:10.1038/NGEO984 CrossRefGoogle Scholar
  27. Dima M, Lohmann G (2007) A hemispheric mechanism for the atlantic multidecadal oscillation. J Clim 20:2706–2719. doi:10.1175/JCL14174.1 CrossRefGoogle Scholar
  28. Dong S, Kelly K (2004) Heat budget in the Gulf Stream Region: the importance of heat storage and advection. J Phys Ocean 34:1214–1231CrossRefGoogle Scholar
  29. Dong BW, Sutton RT (2002) Adjustment of the coupled ocean-atmosphere system to a sudden change in the Thermohaline Circulation. Geophys Res Lett 29(15). doi:10.1029/2002GL015229
  30. Dong BW, Sutton RT (2005) Mechanism of interdecadal thermohaline circulation variability in a coupled ocean-atmosphere GCM. J Clim 18:1117–1135. doi:10.1175/JCLI3328.1 CrossRefGoogle Scholar
  31. Dong BW, Sutton RT (2007) Enhancement of ENSO variability by a weakened atlantic thermohaline circulation in a coupled GCM. J Clim 20:4920–4939. doi:10.1175/JCLI4282.1 CrossRefGoogle Scholar
  32. Dong BW, Sutton RT, Scaife AA (2006) Multidecadal modulation of El Niño Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys Res Lett 3:L08705. doi:10.1029/2006GL025766 CrossRefGoogle Scholar
  33. Eden C, Jung T (2001) North Atlantic interdecadal variability: oceanic response to the North Atlantic Oscillation. J Clim 14:676–691CrossRefGoogle Scholar
  34. Elsner JB, Tsonis AA (1996) Singular spectrum analysis: a new tool in time series analysis. Springer, New YorkGoogle Scholar
  35. Enfield DB, Mestas-Nuñez AM (1999) Multiscale variabilities in global sea surface temperatures and their relationships with tropospheric climate patterns. J Clim 12:2719–2733CrossRefGoogle Scholar
  36. Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28:277–280CrossRefGoogle Scholar
  37. Federov A, Philander SG (2000) Is El Niño changing? Science 288:1997–2002. doi:10.1126/science.288.5473.1997 CrossRefGoogle Scholar
  38. Folland CK, Palmer TN, Parker DE (1986) Sahel rainfall and worldwide sea temperature 1901–1985. Nature 320:602–607CrossRefGoogle Scholar
  39. Frankignoul C, Sennechael N, Kwon Y, Alexander M (2011) Influence of the Meridional Shifts of the Kuroshio and the Oyashio extensions on the atmospheric circulation. J Clim 24:762–777. doi:10.1175/2010JCLI3731.1 CrossRefGoogle Scholar
  40. Getzlaff J, Böning CW, Eden C, Biastock A (2005) Signal propagation related to the North Atlantic overturning. Geophys Res Lett 32. doi:10.1029/2004GL021002
  41. Ghil M, Vautard R (1991) Interdecadal oscillations and the warming trend in global temperature time series. Nature 305:324–327CrossRefGoogle Scholar
  42. Ghil M, Allen MR, Dettinger MD, Ide K, Kondrashov D, Mann ME, Robertson AW, Saunders A, Tian Y, Varadi F, Yiou P (2002) Advanced spectral methods for climatic time series. Rev Geophys 40(1):3.1–3.41. doi:10.1029/2000GR000092 CrossRefGoogle Scholar
  43. Girs AA (1971) Multiyear oscillations of atmospheric circulation and long-term meteorological forecasts. L Gidrometeroizdat (in Russian)Google Scholar
  44. Gray ST, Graumlich LJ, Betancourt JL, Pederson GT (2004) A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D. Geophys Res Lett 31:L12205. doi:10.1029/2004GL019932
  45. Grosfeld K, Lohmann G, Rimbu N, Fraedrich K, Lunkeit F (2007) Atmospheric multidecadal variations in the North Atlantic realm: proxy data, observations, and atmospheric circulation model studies. Clim Past 3. www.clim-past.net/3/39/2007:39-50
  46. Grosfeld K, Lohmann G, Rimbu N (2008) The impact of Atlantic and Pacific Ocean sea surface temperature anomalies on the North Atlantic multidecadal variability. Tellus A. doi:10.1111/j.1600-0870.2008.00304.x
  47. GYa Vangenheim (1940) The long-term temperature and ice break-up forecasting. Proc State Hydrol Inst Iss 10:207–236 (in Russian)Google Scholar
  48. Hakkinen S (1999) A simulation of thermohaline effects of a great salinity anomaly. J Clim 12:1781–1795CrossRefGoogle Scholar
  49. Hansen DV, Bedzek HF (1996) On the nature of decadal anomalies in North Atlantic SST. JGR 101:8749–8758CrossRefGoogle Scholar
  50. Hilmer M, Jung T (2000) Evidence for a recent change in the link between the North Atlantic Oscillations and Arctic sea ice export. Geophys Res Lett 27(7):989–992. doi:10.1029/1999GL010944 CrossRefGoogle Scholar
  51. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  52. Jones PD, Moberg A (2003) Hemispheric and large-scale surface air temperature variations: an extensive revision and an update to 2001. J Clim 16:206–223. doi:10.1175/1520-0442(2003) CrossRefGoogle Scholar
  53. Kaplan A, Cane M, Kushnir Y, Clement A, Blumenthal M, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103:18, 567–18, 589Google Scholar
  54. Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88. doi:10.1038/nature06921 CrossRefGoogle Scholar
  55. Kelly K, Dong S (2004) The relationship of western boundary current heat transport and storage to midlatitude ocean–atmosphere interaction. In: Wang C, Xie S-P, Carton JA (eds) Ocean–atmosphere interaction and climate variability. AGU monographGoogle Scholar
  56. Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288:1984–1986. doi:10.1126/science.288.5473.1984 CrossRefGoogle Scholar
  57. Kirov B, Georgieva K (2002) Long-term variations and interrelations of ENSO, NAO, and solar activity. Phys Chem Earth 27:441–448Google Scholar
  58. Klyashtorin LB, Lyubushin AA (2007) Cyclic climate changes and fish productivity. VNIRO Publishing, Moscow. Editor for English version: Dr. Gary D. Sharp, Center for Climate/Ocean Resources Study, SalinasGoogle Scholar
  59. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi:10.1029/2005GRL024233 CrossRefGoogle Scholar
  60. Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic Multidecadal Oscillation. Geophys Res Lett 33:L17706. doi:10.1029/2006GL026242 CrossRefGoogle Scholar
  61. Kondrashov D, Ghil M (2006) Spatio-temporal filling of missing points in geophysical data sets. Nonlin Proc Geophys 13:151–159CrossRefGoogle Scholar
  62. Kravtsov S (2011) An empirical model of decadal ENSO variability. J Clim (submitted)Google Scholar
  63. Kravtsov S, Kondrashov D, Ghil M (2005) Multi-level regression modeling of nonlinear processes: derivation and applications to climatic variability. J Clim 18:4404–4424. doi:10.1175/JCLI3544.1 CrossRefGoogle Scholar
  64. Kravtsov S, Dewar WK, Ghil M, McWilliams JC, Berloff P (2008) A mechanistic model of mid-latitude decadal climate variability. Phys D 237:584–599. doi:10.1016/j.physd.2007.09.025 CrossRefGoogle Scholar
  65. Kushnir Y (1994) Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J Clim 7(1):141–157CrossRefGoogle Scholar
  66. Kushnir Y, Held I (1996) Equilibrium atmospheric response to North Atlantic SST anomalies. J Clim 9:1208–1220CrossRefGoogle Scholar
  67. Kushnir Y, Robinson WA, Blade I, Hall NMJ, Peng S, Sutton R (2002) Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J Clim 15:2233–2256CrossRefGoogle Scholar
  68. Kwon Y, Alexander MA, Bond NA, Frankignoul C, Nakamura H, Qiu B, Thompson L (2010) Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: a review. J Clim Spec Collection. doi:10.1175/2010JCLI3343.1
  69. Latif M, Barnett TP (1994) Causes of decadal climate variability over the North Pacific and North America. Science 266:634–637CrossRefGoogle Scholar
  70. Latif M, Barnett TP (1996) Decadal climate variability over the North Pacific and North America: dynamics and predictability. J Clim 9:2407–2423CrossRefGoogle Scholar
  71. Latif M, Arpe K, Roeckner E (2000) Oceanic control of decadal North Atlantic sea level pressure variability in winter. Geophys Res Lett 27:727–730. doi:10.1029/1999GL002370 CrossRefGoogle Scholar
  72. Latif M, Roeckner E, Botzet M, Esch M, Haak H, Hagemann S, Jungclaus J, Legutke S, Marsland S, Mikolajewicz U, Mitchell J (2004) Reconstructing, monitoring, and predicting decadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J Clim 17:1605–1614. doi:10.1175/1520-0442(2004) CrossRefGoogle Scholar
  73. Latif M, Böning C, Willebrand J, Biastoch A, Dengg J, Keenlyside N, Schweckendiek U, Madec G (2006) Is the thermohaline circulation changing? J Clim 19(18):4631–4637. doi:10.1175/JCLI3876.1 CrossRefGoogle Scholar
  74. Lau N-C, Nath MJ (1994) A modeling study of the relative roles of tropical and extratropical SST anomalies in the variability of the global atmosphere-ocean system. J Clim 7:1184–1207CrossRefGoogle Scholar
  75. Mann ME, Park J (1994) Global-scale modes of surface temperature variability on interannual to century timescales. J Geophys Res 99:25819–25833CrossRefGoogle Scholar
  76. Mann ME, Park J (1996) Joint spatiotemporal modes of surface temperature and sea level pressure variability in the Northern Hemisphere during the last century. J Clim 9:2137–2162CrossRefGoogle Scholar
  77. Mann ME, Park J, Bradley RS (1995) Global interdecadal and century-scale oscillations during the past five centuries. Nature 378:266–270CrossRefGoogle Scholar
  78. Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787CrossRefGoogle Scholar
  79. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079CrossRefGoogle Scholar
  80. Marshall J, Johnson H, Goodman J (2001a) A study of the interaction of the North Atlantic Oscillation with ocean circulation. J Clim 14:1399–1421CrossRefGoogle Scholar
  81. Marshall J, Kushnir Y, Battisti D, Chang P, Czaja A, Dickson R, Hurrell J, McCartney M, Saravanan R, Visbeck M (2001b) North Atlantic climate variability: phenomena, impacts and mechanisms. Int J Climatol 21:1863–1898. doi:10.1002/joc.693 CrossRefGoogle Scholar
  82. McCartney M (1997) Climate change: is the ocean at the helm? Nature 388:521–522CrossRefGoogle Scholar
  83. Mehta VM, Suarez MJ, Manganello JV, Delworth TL (2000) Oceanic influence on the North Atlantic Oscillation and associated Northern Hemisphere climate variations: 1959–1993. Geophys Res Lett 27(1):121–124. doi:10.1029/1999GL002381 CrossRefGoogle Scholar
  84. Metzger EJ, Hurlburt HE (2001) The importance of high horizontal resolution and accurate coastline geometry in modeling South China Sea Inflow. Geophys Res Lett 28(6):1059–1062. doi:10.1029/2000GL012396 CrossRefGoogle Scholar
  85. Minobe S (1997) A 50–70-year climatic oscillation over the North Pacific and North America. Geophys Res Lett 24:683–686CrossRefGoogle Scholar
  86. Minobe S (1999) Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: role in climatic regime shifts. Geophys Res Lett 26:855–858CrossRefGoogle Scholar
  87. Minobe S, Kuwano-Yoshida A, Komori N, Xie S-P, Small RJ (2008) Influence of the Gulf Stream on the troposphere. Nature 452:206–209. doi:10.1038/nature06690 CrossRefGoogle Scholar
  88. Moron V, Vautard R, Ghil M (1998) Trends, interdecadal and interannual oscillations in global sea-surface temperatures. Clim Dyn 14:545–569CrossRefGoogle Scholar
  89. Msadek R, Dixon KW, Delworth TL, Hurlin W (2010a) Assessing the predictability of the Atlantic meridional overturning circulation and associated fingerprints. Geophys Res Lett 37:L19608. doi:10.1029/2010GL044517 CrossRefGoogle Scholar
  90. Msadek R, Frankignoul C, Li LZX (2010b) Mechanisms of the atmospheric response to North Atlantic multidecadal variability: a model study. Clim Dyn. doi:10.1007/s00382-010-0958-0
  91. Nakamura H, Sampe T, Tanimoto Y, Shimpo A (2004) Observed associations among storm tracks, jet streams, and midlatitude ocean fronts. from AGU monograph: the earth’s climate: the ocean–atmosphere interaction geophysical monograph, vol 147, pp 329–346. doi:10.1029/147GM18
  92. North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Wea Rev 110:669–706Google Scholar
  93. Overland JE, Adams JM, Bond NA (1999) Decadal variability of the aleutian low and its relation to high-latitude circulation. J Clim 12:1542–1548CrossRefGoogle Scholar
  94. Palmer TN, Sun Z (1985) A modeling and observational study of the relationship between sea surface temperature in the northwest Atlantic and the atmospheric general circulation. QJR Meteorol Soc 111:947–975CrossRefGoogle Scholar
  95. Peng S, Robinson WA (2001) Relationships between atmospheric internal variability and the response to an extratropical SST anomaly. J Clim 14:2943–2959. doi:10.1175/1520-0442(2001) CrossRefGoogle Scholar
  96. Peng S, Whitaker JS (1999) Mechanisms determining the atmospheric response to midlatitude SST anomalies. J Clim 12:1393–1408CrossRefGoogle Scholar
  97. Peng S, Robinson WA, Hoerling MP (1997) The modeled atmospheric response to midlatitude SST anomalies and its dependence on background circulation states. J Clim 10:971–987CrossRefGoogle Scholar
  98. Peng S, Robinson WA, Li S (2002) North Atlantic SST forcing of the NAO and relationships with intrinsic hemispheric variability. Geophys Res Lett 29:1276. doi:10.1029/2001GL014043 CrossRefGoogle Scholar
  99. Penland C (1989) Random forcing and forecasting using principal oscillation pattern analysis. Mon Wea Rev 117:2165–2185CrossRefGoogle Scholar
  100. Penland C (1996) A stochastic model of Indo-Pacific sea-surface temperature anomalies. Phys D 98:534–558CrossRefGoogle Scholar
  101. Penland C, Ghil M (1993) Forecasting Northern Hemisphere 700-mb geopotential height anomalies using empirical normal modes. Mon Wea Rev 121:2355–2372CrossRefGoogle Scholar
  102. Pohlmann H, Sienz F, Latif M (2006) Influence of the multidecadal atlantic meridional overturning circulation variability on European climate. J Clim 19:6062–6067 (special section). doi:10.1175/JCLI3941.1 Google Scholar
  103. Polonsky AB, Basharin DV, Voskresenskaya EN, Worley SJ, Yurovsky AV (2004) Relationship between the North Atlantic Oscillation, Euro-Asian climate anomalies and Pacific variability. Mar Meteorol Pac Oceanogr 2(1–2):52–66Google Scholar
  104. Polyakov IV, Alexeev VA, Bhatt US, Polyakova EI, Zhang X (2009) North Atlantic warming: patterns of long-term trend and multidecadal variability. Clim Dyn (Springerlink.com). doi:10.1007/s00382-008-0522-3
  105. Preisendorfer RW (1988) Principal component analysis in meteorology and oceanography. Elsevier, AmsterdamGoogle Scholar
  106. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1994) Numerical recipes, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  107. Rayner NA, Brohan P, Parker DE, Folland CK, Kennedy J, Vanicek M, Ansell T, Tett SFB (2006) Improved analyses of changes and uncertainties in sea-surface temperature measured in situ since the mid-nineteenth century. J Clim 19:446–469. doi:10.1175/JCLI3637.1 CrossRefGoogle Scholar
  108. Robertson AW, Mechoso CR, Kim Y-J (2000) The influence of Atlantic sea surface temperature anomalies on the North Atlantic Oscillation. J Clim 13:122–138. doi:10.1175/1520-0442(2000) CrossRefGoogle Scholar
  109. Rodwell MJ, Rowell DP, Folland CK (1999) Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature 398:320–323CrossRefGoogle Scholar
  110. Rogers JC (1981) The North Pacific Oscillation. Int J Climatol 1:39–57CrossRefGoogle Scholar
  111. Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nature 367:723–726CrossRefGoogle Scholar
  112. Schneider T (2001) Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J Clim 14:853–871. doi:10.1175/1520-0442(2001) CrossRefGoogle Scholar
  113. Shabalova MV, Weber SL (1999) Patterns of temperature variability on multidecadal to centennial timescales. J Geophys Res 104:31023–31041CrossRefGoogle Scholar
  114. Shaffrey L, Sutton R (2006) Bjerknes compensation and the decadal variability of the energy transports in a coupled climate model. J Clim 19:1167–1181. doi:10.1175/JCLI3652.1 CrossRefGoogle Scholar
  115. Shindell DT, Schmidt GA, Miller RL, Rind D (2001) Northern Hemisphere winter climate response to greenhouse gas, ozone, solar, and volcanic forcing. J Geophys Res 106:7193–7210. doi:10.1029/2000JD900547 CrossRefGoogle Scholar
  116. Stocker TF, Mysak LA (1992) Climatic fluctuations on the century time scale: a review of high-resolution proxy data and possible mechanisms. Clim Change 20:227–250CrossRefGoogle Scholar
  117. Sugimoto S, Hanawa K (2009) Decadal and interdecadal variations of the aleutian low activity and their relation to upper oceanic variations over the North Pacific. J Meteorol Soc Jpn 87(4):601–614. doi:10.2151/jmsj.87.601 CrossRefGoogle Scholar
  118. Sutton RT, Allen MR (1997) Decadal predictability of North Atlantic sea surface temperature and climate. Nature 388:563–567CrossRefGoogle Scholar
  119. Sutton RT, Hodson DLR (2003) Influence of the ocean on North Atlantic climate variability 1871–1999. J Clim 16:3296–3313. doi:10.1175/1520-0442(2003) CrossRefGoogle Scholar
  120. Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118. doi:10.1126/science.1109496 CrossRefGoogle Scholar
  121. Sutton RT, Hodson DLR (2007) Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J Clim 20:891–907. doi:10.1175/JCLI4038.1 CrossRefGoogle Scholar
  122. Sutton RT, Hodson DLR, Mathieu P (2003) The role of the Atlantic Ocean in climate forecasting. Proceedings of the ECMWF workshop on the role of the upper ocean in medium and extend range forecasting, ECMWF, ReadingGoogle Scholar
  123. Swanson K, Tsonis AA (2009) Has the climate recently shifted? Geophys Res Lett 36. doi:10.1029/2008GL037022
  124. Timmermann A, Latif M, Voss R, Grotzner A (1998) Northern Hemispheric interdecadal variability: a coupled air-sea mode. J Clim 11:1906–1931CrossRefGoogle Scholar
  125. Timmermann A, Okumura Y, An SI, Clement A, Dong B, Guilyardi E, Hu A, Jungclaus JH, Renold M, Stocker TF, Stouffer RJ, Sutton R, Xie SP, Yin J (2007) The influence of a weakening of Atlantic meridional overturning circulation on ENSO. J Clim 20:4899–4919. doi:10.1175/JCLI4283.1 CrossRefGoogle Scholar
  126. Tsonis AA, Swanson K, Kravtsov S (2007) A new dynamical mechanism for major climate shifts. Geophys Res Lett 34:L13705. doi:10.1029/2007GL030288 CrossRefGoogle Scholar
  127. Van der Swaluw E, Drijfhout SS, Hazeleger W (2007) Bjerknes compensation at high northern latitudes: the ocean forcing the atmosphere. J Clim 20:6023–6032. doi:10.11752007JCLI1562.1 CrossRefGoogle Scholar
  128. Vautard R, Ghil M (1989) Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Phys D 35:395–424CrossRefGoogle Scholar
  129. Vautard R, Yiou P, Ghil M (1992) Singular spectrum analysis: a toolkit for short, noisy and chaotic series. Phys D 58:95–126CrossRefGoogle Scholar
  130. Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim Change 54:251–267. doi:10.1023/A:1016168827653 CrossRefGoogle Scholar
  131. Vellinga M, Wu P (2004) Low-latitude freshwater influence on centennial variability of the Atlantic thermohaline circulation. J Clim 17:4498–4511. doi:10.1175/3219.1 CrossRefGoogle Scholar
  132. Vimont DJ, Kossin JP (2007) The atlantic meridional mode and hurricane activity. Geophy Res Lett 34:L07709. doi:10.1029/2007/GL029683 CrossRefGoogle Scholar
  133. Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28:3923–3926CrossRefGoogle Scholar
  134. Vimont DJ, Battisti DS, Hirst AC (2003a) The seasonal footprinting mechanism in the CSIRO general circulation models. J Clim 16:2653–2667. doi:10.1175/1520-0442(2003) CrossRefGoogle Scholar
  135. Vimont DJ, Wallace JM, Battisti DS (2003b) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Clim 16:2668–2675CrossRefGoogle Scholar
  136. Walker GT, Bliss EW (1932) World weather. Mem R Meteorol Soc 4:53–84Google Scholar
  137. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Wea Rev 109:784–812CrossRefGoogle Scholar
  138. Wang L, Chen W, Huang R (2007) Changes in the variability of North Pacific oscillation around 1975/1976 and its relationship with East Asian winter climate. J Geophys Res 112:D11110. doi:10.1029/2006JD008054 CrossRefGoogle Scholar
  139. Willis JK, Roemmich D, Cornuelle B (2004) Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J Geophys Res 109:C12036. doi:10.1029/2003C002260 CrossRefGoogle Scholar
  140. Wu P, Gordon C (2002) Oceanic influence on North Atlantic climate variability. J Clim 15:1911–1925. doi:10.1175/1520-0442(2002) CrossRefGoogle Scholar
  141. Wu LP, Rodwell M (2004) Gulf Stream forcing of the winter North Atlantic Oscillation. Atmos Sci Lett 5:57–64. doi:10.1016/j.atmoscilet.2003.12.002 CrossRefGoogle Scholar
  142. Xie SP (2004) Satellite observations of cool ocean-atmosphere interaction. Bull Am Meteorol Soc 85:195–208. doi:10.1175/BAMS-85-2-195 CrossRefGoogle Scholar
  143. Xie SP, Carton J (2004) Tropical Atlantic variability: patterns, mechanisms, and impacts. Earth climate: the ocean–atmosphere interaction. In: Wang C, Xie SP, Carton JA (eds) Geophys monograph. AGU, Washington, DC, pp 121–142. doi:10.1029/147GM07
  144. Yualeva EN, Schneider N, Pierce DW, Barnett TP (2001) Modeling of North Pacific climate variability forced by ocean heat flux anomalies. J Clim 14:4027–4046. doi:10.1175/1520-0442(2001) CrossRefGoogle Scholar
  145. Zhang R, Delworth TL (2005) Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J Clim 18:1853–1860. doi:10.1175/JCLI3460.1 CrossRefGoogle Scholar
  146. Zhang R, Delworth TL (2007) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. doi:10.1029/2006GL026267 CrossRefGoogle Scholar
  147. Zhang YJ, Wallace M, Iwasaka N (1996) Is climate variability over the North Pacific a linear response to ENSO? J Clim 9:1468–1478CrossRefGoogle Scholar
  148. Zhang R, Delworth TL, Held IM (2007) Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophys Res Lett 34:L02709. doi:10.1029/2006GL028683 CrossRefGoogle Scholar
  149. Zhen-Shan L, Xian S (2007) Multi-scale analysis of global temperature changes and trend of a drop in temperature in the next 20 years. Meteorol Atmos Phys 95:115–121CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Marcia Glaze Wyatt
    • 1
  • Sergey Kravtsov
    • 2
  • Anastasios A. Tsonis
    • 2
  1. 1.Department of Geologic Sciences, CIRES, Benson Earth Sciences BuildingUniversity of Colorado-BoulderBoulderUSA
  2. 2.Department of Mathematical Sciences, Atmospheric Sciences GroupUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations