Climate Dynamics

, Volume 38, Issue 5–6, pp 1031–1046 | Cite as

Mechanisms controlling warm water volume interannual variations in the equatorial Pacific: diabatic versus adiabatic processes

  • M. Lengaigne
  • U. Hausmann
  • G. Madec
  • C. Menkes
  • J. Vialard
  • J. M. Molines


Variations of the volume of warm water above the thermocline in the equatorial Pacific are a good predictor of ENSO (El Niño/Southern Oscillation) and are thought to be critical for its preconditioning and development. In this study, the Warm Water Volume (WWV) interannual variability is analysed using forced general circulation model experiments and an original method for diagnosing processes responsible for WWV variations. The meridional recharge/discharge to higher latitudes drives 60% of the ENSO-related equatorial WWV variations, while diabatic processes in the eastern equatorial Pacific account for the remaining 40%. Interior meridional transport is partially compensated by western boundary transports, especially in the southern hemisphere. Diabatic equatorial WWV formation (depletions) during La Niña (El Niño) are explained by enhanced (reduced) diathermal transport through enhanced (reduced) vertical mixing and penetrating solar forcing at the 20°C isotherm depth. The respective contribution of diabatic and adiabatic processes during build-ups/depletions strongly varies from event-to-event. The WWV build-up during neutral ENSO phases (e.g. 1980–1982) is almost entirely controlled by meridional recharge, providing a text-book example for the recharge/discharge oscillator’s theory. On the other hand, diabatic processes are particularly active during the strongest La Niña events (1984, 1988, 1999), contributing to more than 70% of the WWV build-up, with heating by penetrative solar fluxes explaining as much as 30% of the total build-up due to a very shallow thermocline in the eastern Pacific. This study does not invalidate the recharge/discharge oscillator theory but rather emphasizes the importance of equatorial diabatic processes and western boundary transports in controlling WWV changes.


El Niño/Southern Oscillation Warm water volume Equatorial Pacific Western boundary currents Solar penetration Vertical mixing 



ML would like to thank C. Meinen and C. Bosc for making their observed meridional transport estimates available as well as M. McPhaden and F. F. Jin for valuable comments and discussions on this work. The authors would also like to thank the two anonymous reviewers of this manuscript and acknowledge the DRAKKAR project ( for providing the oceanic simulations and the TOGA TAO Project Office for making the mooring data easily available.


  1. Alory G, Delcroix T (2002) Interannual sea level changes and associated mass transports in the tropical Pacific from TOPEX/Poseidon data and linear model results (1964–1999). J Geophys Res 107. doi:10.1029/2001JC001067
  2. Barnier B et al (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-admitting resolution. Ocean Dyn 56:543–567. doi:10.1007/s10236-009-0180-y CrossRefGoogle Scholar
  3. Bentamy A, Grimas N, Quilfen Y (1999) Validation of the gridded weekly and monthly wind fields calculated from ERS-1 scatterometer wind observations. Global Atmos Ocean Syst 6:373–396Google Scholar
  4. Blanke B, Delecluse P (1993) Variability of the tropical Atlantic ocean simulated by a general circulation model with two different mixed layer physics. J Phys Oceanogr 23:1363–1388CrossRefGoogle Scholar
  5. Bosc C, Delcroix T (2008) Observed equatorial Rossby waves and ENSO-related warm water volume changes in the equatorial Pacific Ocean. J Geophys Res-Oceans 113(C06003). doi:10.1029/2007JC004613
  6. Brodeau L, Barnier B, Penduff T, Treguier AM, Gulev S (2010) An ERA-40 based atmospheric forcing for global ocean circulation models. Ocean Model 31:88–104. doi:10.1016/j.ocemod.2009.10.005 CrossRefGoogle Scholar
  7. Brown J, Fedorov A (2010) Estimating the diapycnal transport contribution to warm water volume variations in the tropical Pacific ocean. J Clim 23:221–237. doi:10.1175/2009JCLI2347.1 CrossRefGoogle Scholar
  8. Cane M, Zebiak SE (1985) A theory for El Niño and the southern oscillation. Science 228:1084–1087CrossRefGoogle Scholar
  9. Clarke AJ, Van Gorder S, Colantuono G (2007) Wind stress Curl and ENSO discharge/recharge in the equatorial Pacific. J Phys Oceanogr 37:1077–1091CrossRefGoogle Scholar
  10. Collins M, An S-I, Cai W, Ganachaud A, Guilyardi E, Jin F-F, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A (2010) The impact of global warming on the tropical Pacific and El Niño. Nat Geosci 3:391–397. doi:10.1038/ngeo868 CrossRefGoogle Scholar
  11. Cravatte S, Madec G, Izumo T, Menkes C, Bozec A (2008) Progress in the 3-D circulation of the eastern equatorial Pacific in a climate ocean model. Ocean Model 17:28–48. doi:10.1016/j.ocemod.2006.11.003 CrossRefGoogle Scholar
  12. Delcroix T (1998) Observed surface oceanic and atmospheric variability in the tropical Pacific at seasonal and ENSO time scales: a tentative overview. J Geophys Res 103:18611–18633CrossRefGoogle Scholar
  13. Fichefet T, Maqueda MM (1997) Sensitivity of a global sea ice model to the treatment of ice thermo-dynamics and dynamics. J Geophys Res 102:609–646CrossRefGoogle Scholar
  14. Ganachaud A et al (2008) Southwest Pacific ocean circulation and climate experiment. Part II. Implementation plan. NOAA OAR special report/international CLIVAR project office, CLIVAR publication series no. 133Google Scholar
  15. Griffies SM et al (2009) Coordinated Ocean-ice reference experiments (COREs). Ocean Model 26(1–2):1–46. doi:10.1016/j.ocemod.2008.08.007 CrossRefGoogle Scholar
  16. Ishida A, Kashino Y, Hosoda S, Ando K (2008) North‐south asymmetry of warm water volume transport related with El Niño variability. Geophys Res Lett 35:L18612. doi:10.1029/2008GL034858 CrossRefGoogle Scholar
  17. Iudicone D, Madec G, McDougall T (2008) Water-mass transformations in a neutral density framework and the key role of light penetration. J Phys Oceanogr 38:1357–1376CrossRefGoogle Scholar
  18. Izumo T, Vialard J, Lengaigne M, de Boyer Montégut C, Behera SK, Luo JJ, Cravatte S, Masson S, Yamagata T (2010) Influence of the Indian ocean dipole on following year’s El Niño. Nat Geosci 3:168–172CrossRefGoogle Scholar
  19. Jackett DR, McDougall TJ (1995) Minimal adjustment of hydrographic data to achieve static stability. J Atmos Ocean Tech 12:381–389CrossRefGoogle Scholar
  20. Jerlov NG (1968) Optical oceanography. Elsevier, LondonGoogle Scholar
  21. Jin FF (1997a) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829CrossRefGoogle Scholar
  22. Jin FF (1997b) An equatorial ocean recharge paradigm for ENSO. Part II: a stripped-down coupled model. J Atmos Sci 54:830–847CrossRefGoogle Scholar
  23. Le Sommer J, Penduff T, Theetten S, Madec G, Barnier B (2009) How momentum advection schemes affect current-topography interactions at eddy permitting resolution. Ocean Model 29(1):1–14. doi:10.1016/j.ocemod.2008.11.007 CrossRefGoogle Scholar
  24. Lengaigne M, Madec G, Menkes C, Alory G (2003) The impact of isopycnal mixing on the tropical ocean circulation. J Geophys Res 108. doi: 10.1029/2002JC001704
  25. Lengaigne M, Boulanger JP, Menkes C, Spencer H (2006) Influence of the seasonal cycle on the termination of El Nino events in a coupled general circulation model. J Clim 19:1850–1868. doi:10.1175/JCLI3706.1 CrossRefGoogle Scholar
  26. Lengaigne M, Menkes C, Aumont O, Gorgues T, Bopp L, André JM, Madec G (2007) Influence of the oceanic biology on the tropical Pacific climate in a coupled general circulation model. Clim Dyn. doi:10.1007/s00382-006-0200-2
  27. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE (2006) World Ocean Atlas 2005, Volume 1: Temperature. In: Levitus S (ed). NOAA Atlas NESDIS 61, US Government Printing Office, Washington, D.C., 182 ppGoogle Scholar
  28. Madec G (2008) “NEMO ocean engine”. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27 ISSN No 1288-1619Google Scholar
  29. McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314:1740. doi:10.1126/science.1132588.
  30. McPhaden MJ, Zhang X, Hendon HH, Wheeler MC (2006b) Large scale dynamics and MJO forcing of ENSO variability. Geophys Res Lett 33:L16702CrossRefGoogle Scholar
  31. Meinen CS, McPhaden MJ (2000) Observations of warm water volume changes in the equatorial Pacific and their relationship to El Nino and La Nina. J Clim 13:3551–3559CrossRefGoogle Scholar
  32. Meinen CS, McPhaden MJ (2001) Interannual variability in warm water volume transports in the equatorial Pacific during 1993–99. J Phys Oceanogr 31:1324–1345CrossRefGoogle Scholar
  33. Melet A, Gourdeau L, Verron J (2010) Variability in Solomon Sea circulation derived from altimeter sea level data. Ocean Dyn. doi:10.1007/s10236-010-0302-6
  34. Paulson CA, Simpson JJ (1977) Irradiance measurements in the upper ocean. J Phys Oceanogr 7:952–956CrossRefGoogle Scholar
  35. Penduff T, Le Sommer J, Barnier B, Treguier A-M, Molines J-M, Madec G (2007) : Influence of numerical schemes on current-topography interactions in 1/4° global ocean simulations. Ocean Sci 3(4):491–528CrossRefGoogle Scholar
  36. Penduff T, Juza M, Brodeau L, Smith GC, Barnier B, Molines J-M, Treguier A-M, Madec G (2010) Impact of global ocean model resolution on sea-level variability with emphasis on interannual time scales. Ocean Sci 6:269–284CrossRefGoogle Scholar
  37. Roullet G, Madec G (2000) Salt conservation, free surface and varying volume: a new formulation for Ocean GCMs. J Geophys Res 105:23927–23942CrossRefGoogle Scholar
  38. Smith NR (1995) The BMRC ocean thermal analysis system. Aust Meteor Mag 44:93–110Google Scholar
  39. Springer SR, Mcphaden MJ, Busalacchi AJ (1990) Oceanic heat content variability in the tropical pacific during the 1982–1983 El Niño. J Geophys Res 95(C12): 22,089–22,101. doi:10.1029/JC095iC12p22089
  40. Strutton PG, Chavez FP (2004) Radiant heating in the equatorial Pacific: observed variability and potential for real-time calculation. J Clim 17:1097–1109CrossRefGoogle Scholar
  41. Vialard J, Menkes C, Boulanger JP, Delecluse P, Guilyardi E, McPhaden MJ, Madec G (2001) Oceanic mechanisms driving the SST during the 1997–1998 El Niño. J Phys Oceanogr 31:1649–1675CrossRefGoogle Scholar
  42. Walin G (1982) On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus 34:187–195CrossRefGoogle Scholar
  43. Wang F, Dunxin HU (2010) Introduction to international NPOCE program. Chin J Ocean Limnol 28:953. doi:10.1007/s00343-010-0953-7 CrossRefGoogle Scholar
  44. Wang C, Picaut J (2004) Understanding ENSO physics—a review (2004). In: Wang C, Xie SP, Carton JA (eds) Earth climate: the ocean–atmosphere interaction. AGU geosphysical mono-graph series, pp 1–54Google Scholar
  45. Wetzel P, Maier-Reimer E, Botzet M, Jungclaus J, Keenlyside N, Latif M (2006) Effects of ocean biology on the penetrative radiation in a coupled climate model. J Clim 19:3973–3987CrossRefGoogle Scholar
  46. Wyrtki K (1985) Water displacements in the Pacific and the genesis of El Niño cycles. J Geophys Res 90:7129–7132CrossRefGoogle Scholar
  47. Large WG, Yeager, SG (2004) Diurnal to decadal global forcing for ocean and sea-ice models. NCAR technical note. 22 ppGoogle Scholar
  48. Zhang YC, Rossow WB, Lacis AA, Oinas V, Mishchenko MI (2004) Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinements of the radiative transfer model and the input data. J Geophys Res 109:27Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • M. Lengaigne
    • 1
    • 5
  • U. Hausmann
    • 2
  • G. Madec
    • 1
    • 3
  • C. Menkes
    • 1
  • J. Vialard
    • 1
  • J. M. Molines
    • 4
  1. 1.Laboratoire d’Océanographie Expérimentation et Approches NumériquesCNRS, UPMC, IRDParisFrance
  2. 2.Department of PhysicsImperial CollegeLondonUK
  3. 3.National Oceanographic CentreSouthamptonUK
  4. 4.Laboratoire Ecoulements Geophysiques et IndustrielsCNRS, UJF, INPGrenobleFrance
  5. 5.Paris Cedex 05France

Personalised recommendations