Climate Dynamics

, Volume 37, Issue 11–12, pp 2199–2216

Spring Arctic Oscillation-East Asian summer monsoon connection through circulation changes over the western North Pacific

  • Dao-Yi Gong
  • Jing Yang
  • Seong-Joong Kim
  • Yongqi Gao
  • Dong Guo
  • Tianjun Zhou
  • Miao Hu
Article

Abstract

In the present study the links between spring Arctic Oscillation (AO) and East Asian summer monsoon (EASM) was investigated with focus on the importance of the North Pacific atmospheric circulation and sea surface temperature (SST). To reduce the statistical uncertainty, we analyzed high-pass filtered data with the inter-annual time scales, and excluded the El Niño/Southern Oscillation signals in the climate fields using a linear fitting method. The significant relationship between spring AO and EASM are supported by the changes of multi-monsoon components, including monsoon indices, precipitation, and three-dimensional atmospheric circulations. Following a stronger positive spring AO, an anomalous cyclonic circulation at 850 hPa appears in southeastern Asia and the western North Pacific in summer, with the easterly anomalies spanning from the Pacific to Asian continent along 25°N–30°N and the westerly anomalies south of 15°N. At the same time, the summer western North Pacific subtropical high becomes weaker. Consistently, the positive precipitation anomalies are developed over a broad region south of 30°N stretching from southern China to the western Pacific and the negative precipitation anomalies appear in the lower valley of the Yangtze River and southern Japan. The anomalous cyclone in the western North Pacific persisting from spring to summer plays a key role in modulating EASM and monsoon precipitation by a positive air-sea feedback mechanism. During spring the AO-associated atmospheric circulation change produces warmer SSTs between 150°E–180° near the equator. The anomalous sensible and latent heating, in turn, intensifies the cyclone through a Gill-type response of the atmosphere. Through this positive feedback, the tropical atmosphere and SST patterns sustain their strength from spring to summer, that consequently modifies the monsoon trough and the western North Pacific subtropical high and eventually the EASM precipitation. Moreover, the SST response to AO-circulation is supported by the numerical simulations of an ocean model, and the anomalous atmospheric circulation over the western North Pacific is also reproduced by the dedicated numerical simulations using the coupled atmosphere–ocean model. The observation evidence and numerical simulations suggest the spring AO can impact the EASM via triggering tropical air-sea feedback over the western North Pacific.

Keywords

Arctic Oscillation East Asian summer monsoon North Pacific Air-sea interaction 

References

  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167CrossRefGoogle Scholar
  2. Ambaum MHP, Hoskins BJ, Stephenson DB (2001) Arctic Oscillation or north Atlantic Oscillation? J Clim 14:3495–3507CrossRefGoogle Scholar
  3. Ashok K, Yamagata T (2009) The El Niño with a difference. Nature 461:481–484CrossRefGoogle Scholar
  4. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its teleconnection. J Geophys Res 112(C11007). doi:10.1029/2006JC003798
  5. Bamzai AS (2003) Relationship between snow cover variability and Arctic Oscillation on a hierarchy of time scales. Int J Climatol 23:131–142. doi:10.1002/joc.854 CrossRefGoogle Scholar
  6. Bleck R, Rooth C, Hu D, Smith LT (1992) Salinity-driven thermocline transients in a wind-and thermohaline-forced isopycnic coordinate model of the North Atlantic. J Phys Oceanogr 22:1486–1505CrossRefGoogle Scholar
  7. Branstator G (2002) Circumglobal teleconnections, the jetstream waveguide, and the North Atlantic Oscillation. J Clim 15:1893–1910CrossRefGoogle Scholar
  8. Buermann W, Lintner B, Bonfils C (2005) A wintertime Arctic Oscillation signature on early-season Indian Ocean monsoon intensity. J Clim 18:2247–2269CrossRefGoogle Scholar
  9. Chang KM, Fu YF (2002) Interdecadal variations in northern hemisphere winter storm track intensity. J Clim 15:642–658CrossRefGoogle Scholar
  10. Chang C-P, Zhang Y, Li T (2000a) Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part 1: role of the subtropical ridge. J Clim 13:4310–4325CrossRefGoogle Scholar
  11. Chang C-P, Zhang Y, Li T (2000b) Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part 2: Southeast China rainfall and meridional structure. J Clim 13:4326–4340CrossRefGoogle Scholar
  12. Chang C-P, Harr P, Hu JH (2001) Possible roles of Atlantic circulations on the weakening Indian monsoon rainfall-ENSO relationship. J Clim 14:2376–2380CrossRefGoogle Scholar
  13. Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model: a contribution to the French community climate modeling. Climate Dynamics 10:249–266CrossRefGoogle Scholar
  14. Ding YH (1989) Diagnosis methods in dynamic meteorology. Science Press, pp 293, (in Chinese)Google Scholar
  15. Feng S, Hu Q (2008) How the North Atlantic multidecadal oscillation may have influenced the Indian summer monsoon during the past two millennia. Geophys Res Lett 35:L01707. doi:10.1029/2007GL032484 CrossRefGoogle Scholar
  16. Folland CK, Knight J, Linderholm HW, Fereday D, Ineson S, Hurrell JW (2009) The summer North Atlantic Oscillation: past, present, and future. J Clim 22:1082–1103CrossRefGoogle Scholar
  17. Fu CB, Zeng ZM (2005) Correlations between North Atlantic Oscillation Index in winter and eastern China Flood/Drought Index in summer in the last 530 years. Chin Sci Bull 50(21):2505–2516Google Scholar
  18. Furevik T, Bentsen M, Drange H, Kindem I, Kvamstø NG, Sorteberg A (2003) Description and validation of the Bergen Climate Model: ARPEGE coupled with MICOM. Climate Dynamics 21:27–51CrossRefGoogle Scholar
  19. Gill AE (1980) Some simple solution for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462CrossRefGoogle Scholar
  20. Gong D-Y, Ho C-H (2002) Shift in the summer rainfall over Yangtze River valley in the late 1970s. Geophys Res Lett 29(10). doi:10.1029/2001GL014523
  21. Gong D-Y, Ho C-H (2003) Arctic Oscillation signals in East Asian summer monsoon. J Geophys Res 108(D2):4066. doi:10.1029/2002JD002193 CrossRefGoogle Scholar
  22. Gong D-Y, Kim S-J, Ho C-H (2009) Arctic and Antarctic Oscillation signatures in tropical coral proxies over the South China Sea. Ann Geophys 27:1979–1988CrossRefGoogle Scholar
  23. Goswami BN, Madhusoodanan MS, Neema CP, Sengupta D (2006) A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys Res Lett 33:L02706. doi:10.1029/2005GL024803 CrossRefGoogle Scholar
  24. Gu W, Li C, Li W, Zhou W, Chan JCL (2009) Interdecadal unstationary relationship between NAO and east China’s summer precipitation patterns. Geophys Res Lett 36:L13702. doi:10.1029/2009GL038843 CrossRefGoogle Scholar
  25. Hori ME, Yasunari T (2003) NAO impact towards the springtime snow disappearance in the western Eurasian continent. Geophys Res Lett 30(19):1977. doi:10.1029/2003GL018103 CrossRefGoogle Scholar
  26. James IN (1994) Introduction to circulating atmospheres. Cambridge University Press, Cambridge, p 422CrossRefGoogle Scholar
  27. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:431–437CrossRefGoogle Scholar
  28. Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632CrossRefGoogle Scholar
  29. Lau N-C (1988) Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J Atmosph Sci 45(19):2718–2743CrossRefGoogle Scholar
  30. Lau N-C, Holopainen EO (1984) Transient eddy forcing of the time-mean flow as identified by geopotential tendencies. J Atmosph Sci 41(3):313–328CrossRefGoogle Scholar
  31. Lau K-M, Kim K-M, Yang S (2000) Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J Clim 13(14):2461–2482CrossRefGoogle Scholar
  32. Li J, Yu RC, Zhou TJ, Wang B (2005) Why is there an early spring cooling shift downstream of the Tibetan Plateau. J Clim 18(22):4660–4668CrossRefGoogle Scholar
  33. Limpasuvan V, Hartmann DL (1999) Eddies and the annular modes of climate variability. Geophys Res Lett 26(20):3133–3136CrossRefGoogle Scholar
  34. Liu YM, Wu GX, Ren RC (2004) Relation between the subtropical anticyclone and diabatic heating. J Clim 17:682–698CrossRefGoogle Scholar
  35. Lu R (2001) Interannual variability of the summertime North Pacific subtropical high and its relation to atmospheric convection over warm pool. J Meteorol Soc Jpn 79:771–783CrossRefGoogle Scholar
  36. Lu R, Dong BW (2001) Westward extension of North Pacific subtropical high in summer. J Meteorol Soc Jpn 79:1229–1241CrossRefGoogle Scholar
  37. Lu R, Dong B, Ding H (2006) Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon. Geophys Res Lett 33:L24701. doi:10.1029/2006GL027655 CrossRefGoogle Scholar
  38. Matsuno T (1966) Quasi-geostropic motions in the equatorial area. J Meteorol Soc Jpn 44:25–42Google Scholar
  39. Miller AJ, Zhou S, Yang SK (2003) Relationship of the Arctic and Antarctic Oscillations to the outgoing longwave radiation. J Clim 16:1583–1592CrossRefGoogle Scholar
  40. Nakamura T, Tachibana Y, Honda M, Yamane S (2006) Influence of the northern hemisphere annular mode on ENSO by modulating westerly wind bursts. Geophys Res Lett 33:L07709. doi:10.1029/2005GL025432 CrossRefGoogle Scholar
  41. Nakamura T, Tachibana Y, Shimoda H (2007) Importance of cold and dry surges in substantiating the NAM and ENSO relationship. Geophys Res Lett 34:L22703. doi:10.1029/2007GL031220 CrossRefGoogle Scholar
  42. Ogi M, Tachibana Y, Yamazaki K (2004) The connectivity of the winter North Atlantic Oscillation (NAO) and the summer Okhotsk High. J Meteorol Soc Jpn 82(3):905–913CrossRefGoogle Scholar
  43. Otterå OH, Bentsen M, Bethke I, Kvamstø NG (2009) Simulated pre–industrial climate in Bergen Climate Model (version 2): model description and large–scale circulation features. Geosci Model Develop 2:197–212CrossRefGoogle Scholar
  44. Quadrelli R, Wallace JM (2002) Dependence of the structure of the Northern Hemisphere annular modes on the polarity of ENSO. Geophys Res Lett 29(23):2132. doi:10.1029/2002GL015807 CrossRefGoogle Scholar
  45. Rodwell MJ, Hoskins BJ (2001) Subtropical anticyclones and summer monsoons. J Clim 14:3192–3211CrossRefGoogle Scholar
  46. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2293CrossRefGoogle Scholar
  47. Sui C-H, Chung P-H, Li T (2007) Interannual and interdecadal variability of the summertime western North Pacific subtropical high. Geophys Res Lett 34:L11701. doi:10.1029/2006GL029204 CrossRefGoogle Scholar
  48. Sung MK, Kwon W-T, Baek H-J, Boo K-O, Lim G-H, Kug J-S (2006) A possible impact of the North Atlantic Oscillation on the east Asian summer monsoon precipitation. Geophys Res Lett 33:L21713CrossRefGoogle Scholar
  49. Sung M-K, Lim G-H, Kug J-S (2010) Phase asymmetric downstream development of the North Atlantic Oscillation and its impact on the East Asian winter monsoon. J Geophys Res 115:D09105. doi:10.1029/2009JD013153 CrossRefGoogle Scholar
  50. Tao SY, Chen LX (1987) A review of recent research on the East Asian summer monsoon in China. In: Chang C-P, Krishnamurti TN (eds) Monsoon meteorology. Oxford University Press, Oxford, pp 60–92Google Scholar
  51. Thompson DWJ, Lorenz DJ (2004) The signature of the annular modes in the tropical troposphere. J Clim 17:4330–4342CrossRefGoogle Scholar
  52. Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300CrossRefGoogle Scholar
  53. Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau NC, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections association with tropical sea surface temperatures. J Geophys Res 103:14291–14324CrossRefGoogle Scholar
  54. Wang B, Fan Z (1999) Choice of South Asian summer monsoon indices. Bull Am Meteorol Soc 80:629–638CrossRefGoogle Scholar
  55. Wang B, Zhang Q (2002) Pacific-East Asian teleconnection. Part II: how the Philippine Sea anomalous anticyclone is established during El Niño development. J Clim 15:3252–3264CrossRefGoogle Scholar
  56. Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536CrossRefGoogle Scholar
  57. Wang B, Wu Z, Li J, Liu J, Chang C-P, Ding Y, Wu G (2008a) How to measure the strength of the East Asian summer monsoon? J Clim 21:4449–4464CrossRefGoogle Scholar
  58. Wang B, Yang J, Zhou T, Wang B (2008b) Interdecadal changes in the major modes of Asian–Australian monsoon variability: strengthening relationship with ENSO since the late 1970s. J Clim 21:1771–1789CrossRefGoogle Scholar
  59. Wang Y, Li S, Luo D (2009) Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation. J Geophys Res 114:D02112. doi:10.1029/2008JD010929 CrossRefGoogle Scholar
  60. Watanabe M (2004) Asian jet waveguide and a downstream extension of the North Atlantic Oscillation. J Clim 17:4674–4691CrossRefGoogle Scholar
  61. Wu Z, Wang B, Li J, Jin F-F (2009a) An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J Geophys Res 114:D18120. doi:10.1029/2009JD011733 CrossRefGoogle Scholar
  62. Wu BY, Yang K, Zhang RH (2009b) Eurasian snow cover variability and its association with summer rainfall in China. Advances Atmosp Sci 26(1):31–44. doi:10.1007/s00376-009-0031-2 CrossRefGoogle Scholar
  63. Yang S, Lau K-M, Kim K-M (2002) Variations of the east Asian jet stream and Asian-Pacific-American winter climate anomalies. J Clim 15:306–325CrossRefGoogle Scholar
  64. Yanai M, Esbensen S, Chu J-H (1973) Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J Atmos Sci 30:611–627Google Scholar
  65. Yu R, Zhou TJ (2004) Impacts of winter-NAO on March cooling trends over subtropical Eurasia continent in the recent half century. Geophys Res Lett 31(12):L12204. doi:10.1029/2004GL019814 CrossRefGoogle Scholar
  66. Zhang QY, Tao SY, Chen LT (2003) The interannual variability of East Asian summer monsoon indices and its association with the pattern of generation circulation over East Asia. Acta Meteorologica Sinica 61:559–568 (in Chinese with English Abstract)Google Scholar
  67. Zhou TJ, Yu R, Zhang J, Drange H, Cassou C, Deser C, Hodson DLR, Sanchez-Gomez E, Li J, Keenlyside N, Xin X, Okumura Y (2009) Why the western Pacific subtropical high has extended westward since the late 1970s. J Clim 22:2199–2215CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Dao-Yi Gong
    • 1
  • Jing Yang
    • 1
  • Seong-Joong Kim
    • 2
  • Yongqi Gao
    • 3
    • 4
  • Dong Guo
    • 1
    • 3
  • Tianjun Zhou
    • 5
  • Miao Hu
    • 1
  1. 1.State Key Laboratory of Earth Surface Processes and Resource EcologyBeijing Normal UniversityBeijingChina
  2. 2.Korea Polar Research InstituteIncheonKorea
  3. 3.Nansen-Zhu International Research Center, IAP/CASBeijingChina
  4. 4.Nansen Environmental and Remote Sensing Center/Bjerknes Center for Climate ResearchBergenNorway
  5. 5.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), IAP/CASBeijingChina

Personalised recommendations