Advertisement

Climate Dynamics

, Volume 38, Issue 5–6, pp 859–876 | Cite as

Stochastically-driven multidecadal variability of the Atlantic meridional overturning circulation in CCSM3

  • Young-Oh KwonEmail author
  • Claude Frankignoul
Article

Abstract

The Atlantic meridional overturning circulation (AMOC) in the last 250 years of the 700-year-long present-day control integration of the Community Climate System Model version 3 with T85 atmospheric resolution exhibits a red noise-like irregular multi-decadal variability with a persistence longer than 10 years, which markedly contrasts with the preceding ~300 years of very regular and stronger AMOC variability with ~20 year periodicity. The red noise-like multi-decadal AMOC variability is primarily forced by the surface fluxes associated with stochastic changes in the North Atlantic Oscillation (NAO) that intensify and shift northward the deep convection in the Labrador Sea. However, the persistence of the AMOC and the associated oceanic anomalies that are directly forced by the NAO forcing does not exceed about 5 years. The additional persistence originates from anomalous horizontal advection and vertical mixing, which generate density anomalies on the continental shelf along the eastern boundary of the subpolar gyre. These anomalies are subsequently advected by the mean boundary current into the northern part of the Labrador Sea convection region, reinforcing the density changes directly forced by the NAO. As no evidence was found of a clear two-way coupling with the atmosphere, the multi-decadal AMOC variability in the last 250 years of the integration is an ocean-only response to stochastic NAO forcing with a delayed positive feedback caused by the changes in the horizontal ocean circulation.

Keywords

Atlantic Meridional Overturning Circulation North Atlantic Oscillation Mixed Layer Depth North Atlantic Oscillation Index Subpolar Gyre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We wish to acknowledge helpful discussions and technical support from many colleagues including G. Danabasoglu, M. Spall, F. Straneo, S. Jayne, and J. Deshayes, and constructive reviews by the two anonymous reviewers. We gratefully acknowledge financial support from WHOI Ocean Climate Change Institute and NOAA Climate Program Office. This work was also supported in part by the Institut universitaire de France (CF).

References

  1. Bentsen M, Drange H, Furevik T, Zhou T (2004) Simulated variability of the Atlantic meridional overturning circulation. Clim Dyn 22:701–720CrossRefGoogle Scholar
  2. Bersch M (2002) North Atlantic Oscillation-induced changes of the upper layer circulation in the northern North Atlantic Ocean. J Geophys Res 107(10):3156. doi: 10.1029/2001JC000901 CrossRefGoogle Scholar
  3. Bersch M, Yashayaev I, Koltermann KP (2008) Recent changes of the thermohaline circulation in the subpolar North Atlantic. Ocean Dyn 57:223–235CrossRefGoogle Scholar
  4. Bitz CM, Holland MM, Hunke E, Moritz RE (2005) Maintenance of the sea-ice edge. J Clim 18:2903–2921CrossRefGoogle Scholar
  5. Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009CrossRefGoogle Scholar
  6. Bryden HL, Longworth HR, Cunningham SA (2005) Slowing of the Atlantic meridional overturning circulation at 25°N. Nature 438:655–657CrossRefGoogle Scholar
  7. Chapman WL, Walsh JE (1993) Recent variations of sea ice and air temperature in high latitudes. Bull Am Meteor Soc 74:33–47CrossRefGoogle Scholar
  8. Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006) The community climate system model version 3 (CCSM3). J Clim 19:2122–2143CrossRefGoogle Scholar
  9. Cunningham ST et al (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science 317:935–938CrossRefGoogle Scholar
  10. Curry RG, McCartney MS (2001) Ocean gyre circulation changes associated with the North Atlantic Oscillation. J Phys Oceanogr 31:3374–3400CrossRefGoogle Scholar
  11. Czeschel L, Marshall DP, Johnson HL (2010) Oscillatory sensitivity of Atlantic overturning to high-latitude forcing. Geophys Res Lett 37:L10601. doi: 10.1029/2010GL043177 CrossRefGoogle Scholar
  12. Danabasoglu G (2008) On multi-decadal variability of the Atlantic meridional overturning circulation in the community climate system model version 3 (CCSM3). J Clim 21:5524–5544CrossRefGoogle Scholar
  13. de Coëtlogon G, Frankignoul C, Bentsen M, Delon C, Haak H, Masina S, Pardaens A (2006) Gulf Steam variability in five oceanic general circulation models. J Phys Oceanogr 36:2119–2135CrossRefGoogle Scholar
  14. Delworth TL, Greatbatch RJ (2000) Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J Clim 13:1481–1495CrossRefGoogle Scholar
  15. Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16:661–676CrossRefGoogle Scholar
  16. Delworth TL, Manabe S, Stouffer R (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J Clim 6:1993–2011CrossRefGoogle Scholar
  17. Delworth TL, Manabe S, Stouffer R (1997) Multidecadal climate variability in the Greenland Sea and surrounding regions: a coupled model simulation. Geophys Res Lett 24:257–260CrossRefGoogle Scholar
  18. Deser C, Walsh JE, Timlin MS (2000) Arctic sea ice variability in the context of recent atmospheric circulation trends. J Clim 13:617–633CrossRefGoogle Scholar
  19. Deshayes J, Frankignoul C (2008) Simulated variability of the circulation in the North Atlantic from 1953 to 2003. J Clim 21:4919–4933CrossRefGoogle Scholar
  20. Dong B, Sutton RT (2005) Mechanism of interdecadal thermohaline circulation variability in a coupled ocean-atmosphere GCM. J Clim 18:1117–1135CrossRefGoogle Scholar
  21. Eden C, Jung T (2001) North Atlantic interdecadal variability: oceanic response to the North Atlantic Oscillation (1865–1997). J Clim 14:676–691CrossRefGoogle Scholar
  22. Eden C, Willebrand J (2001) Mechanism of interannual to decadal variability of the North Atlantic circulation. J Clim 14:2266–2280CrossRefGoogle Scholar
  23. Frankignoul C, Deshayes J, Curry R (2009) The role of salinity in the decadal variability of the North Atlantic meridional overturning circulation. Climate Dyn. doi: 10.1007/s00382-008-0523-2
  24. Gent PR, Mcwilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155CrossRefGoogle Scholar
  25. Gregory JM et al (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32:L12703. doi: 10.1029/2005GL023209 CrossRefGoogle Scholar
  26. Haak H, Jungclaus J, Mikolajewicz U, Latif M (2003) Formation and propagation of great salinity anomalies. Geophys Res Lett 30:1473. doi: 10.1029/2003GL017065 CrossRefGoogle Scholar
  27. Häkkinen S (1999) Variability of the simulated meridional heat transport in the North Atlantic for the period 1951–1993. J Geophys Res 104:10991–11007CrossRefGoogle Scholar
  28. Häkkinen S, Rhines PB (2004) Decline of subpolar North Atlantic circulation during the 1990 s. Science 304:555–559CrossRefGoogle Scholar
  29. Häkkinen S, Rhines PB (2009) Shifting surface currents in the northern North Atlantic Ocean. J Geophys Res 114:C04005. doi: 10.1029/2008JC004883 CrossRefGoogle Scholar
  30. Hatun H, Sando AB, Drange H, Hansen B, Valdimarsson H (2005) Influence of the Atlantic subpolar gyre on the thermohaline circulation. Science 309:1841–1844CrossRefGoogle Scholar
  31. Hawkins E, Sutton R (2007) Variability of the Atlantic thermohaline circulation described by three-dimensional empirical orthogonal functions. Clim Dyn 29:745–762CrossRefGoogle Scholar
  32. Johnson HL, Marshall DP (2004) Global teleconnections of meridional overturning circulation anomalies. J Phys Oceanogr 34:1702–1722CrossRefGoogle Scholar
  33. Josey SA, Marsh R (2005) Surface freshwater flux variability and recent freshening of the North Atlantic in the eastern subpolar gyre. J Geophys Res 110:C05008. doi: 10.1029/2004JC002521 CrossRefGoogle Scholar
  34. Joyce TM, Zhang R (2010) On the path of the Gulf Stream and the Atlantic Meridional overturning circulation. J Clim 23:3146–3154CrossRefGoogle Scholar
  35. Jungclaus J, Haak H, Latif M, Mikolajewicz U (2005) Arctic-North Atlantic interactions and multi-decadal variability of the meridional overturning circulation. J Clim 18:4013–4031CrossRefGoogle Scholar
  36. Kawase M (1987) Establishment of deep circulation driven by deep water production. J Phys Oceanogr 17:2294–2316CrossRefGoogle Scholar
  37. Killworth PD (1985) A two-level wind and buoyancy driven thermocline model. J Phys Oceanogr 15:1414–1432CrossRefGoogle Scholar
  38. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi: 10.1029/2005GL024233 CrossRefGoogle Scholar
  39. Kwon Y-O, Alexander MA, Bond NA, Frankignoul C, Nakamura H, Qiu B, Thompson L (2010) Role of Gulf Stream, Kuroshio-Oyashio and their extensions in large-scale atmosphere-ocean interaction: a review. J Clim 23:3249–3281CrossRefGoogle Scholar
  40. Large WG, Danabasoglu G (2006) Attribution and impacts of upper-ocean biases in CCSM3. J Clim 19:2325–2346CrossRefGoogle Scholar
  41. Latif M, Roecker E, Mikolajewicz U, Voss V (2000) Tropical stabilization of the thermohaline circulation in a green house warming simulation. J Clim 13:1809–1813CrossRefGoogle Scholar
  42. Levermann A, Born A (2007) Bistability of the Atlantic subpolar gyre in a coarse-resolution climate model. Geophys Res Lett 34:L24605. doi: 10.1029/2007GL031732 CrossRefGoogle Scholar
  43. Levitus S, Boyer T, Conkright M, Johnson D, O’Brien T, Antonov J, Stephens C, Gelfeld R (1998) Introduction. Vol 1, World Ocean Database 1998, NOAA Atlas NESDIS 18, 346 ppGoogle Scholar
  44. Marshall J, Johnson H, Goodman J (2001) A study of the interaction of the North Atlantic Oscillation with ocean circulation. J Clim 14:1399–1421CrossRefGoogle Scholar
  45. Mauritzen C, Häkkinen S (1999) On the relationship between dense water formation and the “meridional overturning cell” in the North Atlantic Ocean. Deep-Sea Res I 46:877–894CrossRefGoogle Scholar
  46. Mauritzen C, Hjøllo SS, Sandø AB (2006) Passive tracers and active dynamics: a model study of hydrography and circulation in the northern North Atlantic. J Geophys Res 111:C08014. doi: 10.1029/2005JC003252 CrossRefGoogle Scholar
  47. Mignot J, Frankignoul C (2005) The variability of the Atlantic meridional overturning circulation, the North Atlantic Oscillation, and the El Ninõ-Southern Oscillation in the Bergen climate model. J Clim 18:2361–2375CrossRefGoogle Scholar
  48. Msadek R, Frankignoul C (2009) Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model. Clim Dyn 33:45–62. doi: 10.1007/s00382-008-0452-0 CrossRefGoogle Scholar
  49. Peña-Molino B, Joyce TM (2008) Variability in the slope water and its relation to the Gulf stream path. Geophys Res Lett 35:L03606. doi: 10.1029/2007GL032183 CrossRefGoogle Scholar
  50. Pickart RS, Spall MA (2007) Impact of Labrador Sea convection on the North Atlantic meridional overturning circulation. J Phys Oceanogr 37:2207–2227CrossRefGoogle Scholar
  51. Schott FA, Fischer J, Dengler M, Zantopp R (2006) Variability of the deep western boundary current east of the Grand Banks. Geophys Res Lett 33:L21S07. doi: 10.1029/2006GRL026563 CrossRefGoogle Scholar
  52. Schweckendiek U, Willebrand J (2005) Mechanisms affecting the overturning response in global warming simulations. J Clim 18:4925–4936CrossRefGoogle Scholar
  53. Spall MA (2004) Boundary currents and water mass transformation in marginal seas. J Phys Oceanogr 34:1197–1213CrossRefGoogle Scholar
  54. Spall MA (2008) Buoyancy-forced downwelling in boundary currents. J Phys Oceanogr 38:2704–2721CrossRefGoogle Scholar
  55. Spall MA, Pickart RS (2001) Where does dense water sink? A subpolar gyre example. J Phys Oceanogr 31:810–826CrossRefGoogle Scholar
  56. Steele M, Morley R, Ermold W (2001) PHC: a global ocean hydrography with a high quality Arctic Ocean. J Clim 14:2079–2087CrossRefGoogle Scholar
  57. Straneo F (2006) On the connection between dense water formation, overturning, and poleward heat transport in a convective basin. J Phys Oceanogr 36:1822–1840CrossRefGoogle Scholar
  58. Straneo F, Pickart RS, Lavender K (2003) Spreading of Labrador Sea water: an advective-diffusive study based on Lagrangian data. Deep-Sea Res I 50:701–719CrossRefGoogle Scholar
  59. Talley LD, Reid JL, Robbins PE (2003) Data-based meridional overturning streamfunctions for the global ocean. J Clim 16:3213–3226CrossRefGoogle Scholar
  60. TeRaa L, Dijkstra H (2002) Instability of the thermohaline ocean circulation on interdecadal timescales. J Phys Oceanogr 32:138–160CrossRefGoogle Scholar
  61. Thorpe R, Gregory J, Johns T, Wood R, Mitchell J (2001) Mechanisms determining the Atlantic thermohaline circulation response to greenhouse gas forcing in a non-flux-adjusted coupled climate model. J Clim 14:3102–3116CrossRefGoogle Scholar
  62. Timmermann A, Latif M, Voss R, Groetzner A (1998) Northern Hemispheric interdecadal variability: a coupled air-sea mode. J Clim 11:1906–1931CrossRefGoogle Scholar
  63. Toole JM, Curry RG, Joyce TM, McCartneyM, Peña-Molino B (2010) Transport of the North Atlantic Deep Western Boundary Current about 39°N, 70°W: 2004–2008. Deep Sea Res II submittedGoogle Scholar
  64. Trenberth KE (1984) Some effects of finite sample size and persistence on meteorological statistics. Part I: autocorrelations. Mon Wea Rev 112:2359–2368CrossRefGoogle Scholar
  65. Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33:L12704. doi: 10.1029/2006GL026894 CrossRefGoogle Scholar
  66. Vellinga M, Wu P (2004) Low-latitude freshwater influence on centennial variability of the Atlantic thermohaline circulation. J Clim 17:4498–4511CrossRefGoogle Scholar
  67. Visbeck M, Chassignet EP, Curry RG, Delworth TL, Dickson RR, Krahmann G (2003) The ocean’s response to North Atlantic Oscillation variability. The North Atlantic Oscillation: Climatic Significance and Environmental Impact. Geophys Monogr No. 134 Amer Geophys Union 113–145Google Scholar
  68. Winton M (1997) The damping effect of bottom topography on internal decadal-scale oscillations of the thermohaline circulation. J Phys Oceanogr 27:203–208CrossRefGoogle Scholar
  69. Zhang R (2008) Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys Res Lett 35:L20705. doi: 10.1029/2008GL035463 CrossRefGoogle Scholar
  70. Zhang R, Vallis GK (2006) Impact of Great Salinity Anomalies on the low-frequency variability of the North Atlantic climate. J Clim 19:470–482CrossRefGoogle Scholar
  71. Zhang R, Vallis GK (2007) The role of bottom vortex stretching on the path of the North Atlantic Western Boundary Current and on the northern recirculation gyre. J Phys Oceanogr 37:2053–2080CrossRefGoogle Scholar
  72. Zhu X, Jungclaus J (2008) Interdecadal variability of the meridional overturning circulation as an ocean internal mode. Clim Dyn 31:731–741. doi: 10.1007/s00382-008-0383-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Physical Oceanography DepartmentWoods Hole Oceanographic InstitutionWoods HoleUSA
  2. 2.LOCEAN/IPSLUniversité Pierre et Marie CurieParisFrance

Personalised recommendations