Climate Dynamics

, Volume 37, Issue 9–10, pp 1771–1782 | Cite as

Processes governing the predictability of the Atlantic meridional overturning circulation in a coupled GCM

Article

Abstract

The processes that govern the predictability of decadal variations in the North Atlantic meridional overturning circulation (MOC) are investigated in a long control simulation of the ECHO-G coupled atmosphere–ocean model. We elucidate the roles of local stochastic forcing by the atmosphere, and other potential ocean processes, and use our results to build a predictive regression model. The primary influence on MOC variability is found to come from air–sea heat fluxes over the Eastern Labrador Sea. The maximum correlation between such anomalies and the variations in the MOC occurs at a lead time of 2 years, but we demonstrate that the MOC integrates the heat flux variations over a period of 10 years. The corresponding univariate regression model accounts for 74.5% of the interannual variability in the MOC (after the Ekman component has been removed). Dense anomalies to the south of the Greenland-Scotland ridge are also shown to precede the overturning variations by 4–6 years, and provide a second predictor. With the inclusion of this second predictor the resulting regression model explains 82.8% of the total variance of the MOC. This final bivariate model is also tested during large rapid decadal overturning events. The sign of the rapid change is always well represented by the bivariate model, but the magnitude is usually underestimated, suggesting that other processes are also important for these large rapid decadal changes in the MOC.

Keywords

Decadal predictability Atmosphere ocean general circulation model Meridional overturning circulation 

Supplementary material

382_2011_1025_MOESM1_ESM.pdf (420 kb)
PDF (419 KB)

References

  1. Bacon S (1997) Circulation and fluxes in the North Atlantic between Greenland and Ireland. J Phys Oceanogr 27:1420–1435CrossRefGoogle Scholar
  2. Beltrami H, González-Rouco JF, Stevens MB (2006) Subsurface temperatures during the last millennium: model and observation. Geophys Res Lett 33:L09705. doi:10.1029/2006GL026050 Google Scholar
  3. Bingham R, Hughes C, Roussenov V, Williams R (2007) Meridional coherence of the North Atlantic meridional overturning circulation. Geophys Res Lett 34:L23606. doi:10.1029/2007GL031731 Google Scholar
  4. Clarke RA (1984) Transport through the Cape Farewell-Flemish Cap section. Rapp P V Reun Cons Int Explor Mer 185:120–130Google Scholar
  5. Collins M, Botzet M, Carril A, Drange H, Jouzeau A, Latif M, Masina S, Ottera OH, Pohlmann H, Sorteberg A, Sutton RT, Terray L (2006) Interannual to decadal climate predictability in the North Atlantic: a multimodel-ensemble study. J Clim 19:1195–1203CrossRefGoogle Scholar
  6. Colin de Verdière A, Huck T (1999) Baroclinic instability: an oceanic wavemaker for interdecadal variability. J Phys Oceanogr 29(5):893–910CrossRefGoogle Scholar
  7. Delworth TL, Greatbatch RJ (2000) Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J Clim 13:1481–1495CrossRefGoogle Scholar
  8. Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16:661–676CrossRefGoogle Scholar
  9. Delworth TL, Manabe S, Stouffer RJ (1993) Interdecadal variations in the thermohaline circulation in a coupled ocean–atmosphere model. J Clim 6:1993–2011CrossRefGoogle Scholar
  10. Dong B, Sutton RT (2005) Mechanism of interdecadal thermohaline circulation variability in a coupled ocean–atmosphere GCM. J Clim 18:1117–1135CrossRefGoogle Scholar
  11. Eden C, Willebrand J (2001) Mechanism of interannual to decadal variability of the North Atlantic circulation. J Clim 14:2266–2280CrossRefGoogle Scholar
  12. Frankignoul C, Hasselmann K (1977) Stochastic climate models. Part II: application to sea-surface temperature anomalies and thermocline variability. Tellus 29:289–305CrossRefGoogle Scholar
  13. González-Rouco FJ, Beltrami H, Zorita E, von Storch H (2006) Simulation and inversion of borehole temperature profiles in surrogate climates: spatial distribution and surface coupling. Geophys Res Lett 33:L01703. doi:10.1029/2005GL024693 CrossRefGoogle Scholar
  14. González-Rouco FJ, Beltrami H, Zorita E, Stevens MB (2009) Borehole climatology: a discussion based on contributions from climate modeling. Clim Past 5:97–127Google Scholar
  15. González-Rouco JF, Zorita E, Cubasch U, von Storch H, Fisher-Bruns I, Valero F, Montavez JP, Schlese U, Legutke S (2003b) Simulating the climate since 1000 AD with the AOGCM ECHO-G. ESA SP 535:329–338Google Scholar
  16. Gregory JM, Dixon KW, Stouffer RJ, Weaver AJ, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Sokolov AP, Thorpe RB (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32:L12703. doi:10.1029/2005GL023209 CrossRefGoogle Scholar
  17. Griffies SM, Tziperman E (1995) A linear thermohaline oscillator driven by stochastic atmospheric forcing. J Clim 8:2440–2453CrossRefGoogle Scholar
  18. Guemas V, Salas-Mélia D (2008) Simulation of the atlantic meridional overturning circulation in an atmosphere–ocean global coupled model. Part I: a mechanism governing the variability of ocean convection in a preindustrial experiment. Clim Dyn 31:29–48. doi:10.1007/s00382-007-0336-8 CrossRefGoogle Scholar
  19. Hall A, Stouffer R (2001) An abrupt climate event in a coupled ocean–atmosphere simulation without external forcing. Nature 409:171–174CrossRefGoogle Scholar
  20. Hasselmann K (1976) Stochastic climate models. Part I: theory. Tellus 28:473–484Google Scholar
  21. Hátún H, Sandø A, Drange H, Hansen B, Valdimarsson H (2005) Influence of the Atlantic subpolar gyre on the thermohaline circulation. Science 309:1841–1844. doi:10.1126/science.1114777 CrossRefGoogle Scholar
  22. Hawkins E, Sutton R (2008) Potential predictability of rapid changes in the Atlantic meridional overturning circulation. Geophys Res Lett 35:L11603. doi:10.1029/2008GL034059 CrossRefGoogle Scholar
  23. Jungclaus JH, Haak H, Latif M, Mikolajewicz U (2005) Arctic-North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18:4013–4031CrossRefGoogle Scholar
  24. Keenlyside N, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88. doi:10.1038/nature06921 CrossRefGoogle Scholar
  25. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi:10.1029/2005GL024233 CrossRefGoogle Scholar
  26. Kravtsov S, Ghil M (2004) Interdecadal variability in a hybrid coupled ocean–atmosphere–sea ice model. J Phys Oceanogr 34:1756–1775CrossRefGoogle Scholar
  27. Legutke S, Voss R (1999) The Hamburg atmosphere–ocean coupled circulation model ECHO-G. Technical report 18, DKRZ, Hamburg, GermanyGoogle Scholar
  28. Lohmann K, Drange H, Bentsen M (2009) Response of the North Atlantic subpolar gyre to persistent North Atlantic oscillation like forcing. Clim Dyn 32:273–285. doi:10.1007/s00382-008-0467-6 CrossRefGoogle Scholar
  29. Marshall JC, Schott F (1999) Open ocean convection: observations, theory and models. Rev Geophys 37(1):1–64CrossRefGoogle Scholar
  30. Meehl G, Goddard L, Murphy J, Stouffer RJ, Boer GJ, Danabasoglu G, Dixon KW, Giorgetta MA, Greene AM, Hawkins E, Hegerl G, Karoly D, Keenlyside N, Kimoto M, Kirtman B, Navarra A, Pulwarty R, Smith DM, Stammer D, Stockdale T (2009) Decadal prediction: can it be skillful? Bull Am Meteorol Soc 90:1467–1485. doi:10.1175/2009BAMS2778.1 CrossRefGoogle Scholar
  31. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USAGoogle Scholar
  32. Monahan A, Alexander J, Weaver A (2008) Stochastic models of the meridional overturning circulation: time scales and patterns of variability. Philos Trans R Soc A 366:2525–2542. doi:10.1098/rsta.2008.0045 CrossRefGoogle Scholar
  33. Msadek R, Frankignoul C (2009) Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model. Clim Dyn 33:45–62. doi:10.1007/s00382-008-0452-0 CrossRefGoogle Scholar
  34. Ortega P, Montoya M, González-Rouco F, Mignot J, Legutke S (2011) Variability of the Atlantic meridional overturning circulation in the last millennium and two IPCC scenarios. Clim Dyn (submitted)Google Scholar
  35. Pohlmann H, Jungclaus JH, Köhl A, Stammer D, Marotzke J (2009) Initializing decadal climate predictions with the GECCO oceanic synthesis: effects on the North Atlantic. J Clim 22:3926–3938. doi:10.1175/2009JCLI2535.1 CrossRefGoogle Scholar
  36. Reynaud TH, Weaver AJ, Greatbatch RJ (1995) Summer mean circulation of the Northwestern Atlantic Ocean. J Geophys Res 100:779–816CrossRefGoogle Scholar
  37. Roberts M, Wood R (1997) Topographic sensitivity studies with a bryan-cox-type ocean model. J Phys Oceanogr 27:823–836CrossRefGoogle Scholar
  38. Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dumenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996) The atmospheric general circulation model ECHAM4: model description and simulation of present-day climate. Technical report 218, Max-Planck-Institut fuer Meterologie, Hamburg, GermanyGoogle Scholar
  39. Saravanan R, McWilliams J (1997) Stochasticity and spatial resonance in interdecadal climate fluctuations. J Clim 10:2299–2320CrossRefGoogle Scholar
  40. Smith DM, Cusack S, Colman A, Folland C, Harris G, Murphy J (2007) Improved Surface temperature prediction for the coming decade from a global climate model. Science 317:796–799. doi:10.1126/science.1139540 CrossRefGoogle Scholar
  41. Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118. doi:10.1126/science.1109496 CrossRefGoogle Scholar
  42. Te Raa L, Dijkstra H (2002) Instability of the thermohaline ocean circulation on interdecadal timescales. J Phys Oceanogr 32:138–160CrossRefGoogle Scholar
  43. Timmermann A, Latif M, Voss R, Grötzner A (1998) Northern Hemispheric interdecadal variability: a coupled air–sea mode. J Clim 11:1906–1931CrossRefGoogle Scholar
  44. von Storch H, Zorita E, Jones JM, Dimitriev Y, Gonzalez-Rouco F, Tett SFB (2004) Reconstructing past climate from noisy data. Science 306:679–682. doi:10.1126/science.1096109 CrossRefGoogle Scholar
  45. Wolff JO, Maier-Reimer E, Legutke S (1997) The Hamburg Ocean primitive equation model. Technical Report 13, DKRZ, Hamburg, GermanyGoogle Scholar
  46. Zorita E, González-Rouco JF (2002) Are temperature-sensitive proxies adequate for North Atlantic oscillation reconstructions? Geophys Res Lett 29:48–1. doi:10.1029/2002GL015404 CrossRefGoogle Scholar
  47. Zorita E, González-Rouco JF, Legutke S (2003) Testing the Mann et al. (1999) approach to paleoclimate reconstructions in the context of a 1000-yr control simulation with the ECHO-G coupled climate model. J Clim 16:1378–1390CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Dpto. Astrofísica y Ciencias de la Atmósfera, Facultad de Ciencias FísicasUniversidad Complutense de MadridMadridSpain
  2. 2.NCAS-Climate, Department of MeteorologyUniversity of ReadingReadingUK

Personalised recommendations