Skip to main content

Advertisement

Log in

Downscaling of South America present climate driven by 4-member HadCM3 runs

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The objective of this work is to evaluate climate simulations over South America using the regional Eta Model driven by four members of an ensemble of the UK Met Office Hadley Centre HadCM3 global model. The Eta Model has been modified with the purpose of performing long-term decadal integrations and has shown to reproduce “present climate”—the period 1961–1990—reasonably well when forced by HadCM3. The global model lateral conditions with a resolution of 2.5° latitude × 3.75° longitude were provided at a frequency of 6 h. Each member of the global model ensemble has a different climate sensitivity, and the four members were selected to span the range of uncertainty encompassed by the ensemble. The Eta Model nested in the HadCM3 global model was configured with 40-km horizontal resolution and 38 layers in the vertical. No large-scale internal nudging was applied. Results are shown for austral summer and winter at present climate defined as 1961–90. The upper and low-level circulation patterns produced by the Eta-CPTEC/HadCM3 experiment set-up show good agreement with reanalysis data and the mean precipitation and temperature with CRU observation data. The spread in the downscaled mean precipitation and temperature is small when compared against model errors. On the other hand, the benefits in using an ensemble is clear in the improved representation of the seasonal cycle by the ensemble mean over any one realization. El Niño and La Niña years were identified in the HadCM3 member runs based on the NOAA Climate Prediction Center criterion of sea surface temperature anomalies in the Niño 3.4 area. The frequency of the El Niño and La Niña events in the studied period is underestimated by HadCM3. The precipitation and temperature anomalies typical of these events are reproduced by most of the Eta-CPTEC/HadCM3 ensemble, although small displacements of the positions of the anomalies occur. This experiment configuration is the first step on the implementation of Eta-CPTEC/HadCM3 upcoming experiments on climate change studies that are discussed in a companion paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alves L, Marengo JA (2009) Assessment of regional seasonal predictability using the PRECIS regional climate modeling system over South America. Theor App Climat. doi:10.1007/s00704-009-0165-2

  • Berbery EH, Luo Y, Mitchell K, Betts A (2003) Eta model estimated land surface processes and the hydrological cycle of the Mississippi Basin. J Geophys Res 108:8852. doi:10.1029/2002JD003192

    Article  Google Scholar 

  • Black TL (1994) NMC notes. the new NMC mesoscale Eta model: description and forecast examples. Weather Anal Forecast 9:256–278

    Google Scholar 

  • Cabré MF, Solman S, Nuñez M (2010) Creating regional climate change scenarios over southern South America for the 2020 and 2050s using the pattern scaling technique: validity and limitations. Climat Chan 98:449–469. doi:10.1007/s10584-009-9737-5

    Article  Google Scholar 

  • Chen F, Janjić ZI, Mitchell K (1997) Impact of atmospheric surface-layer parameterization in the new land-surface scheme of the NCEP mesoscale Eta model. Bound-Layer Meteor 85:391–421

    Article  Google Scholar 

  • Chou SC, Nunes AMB, Cavalcanti IFA (2000) Extended range forecasts over South America using the regional Eta model. J Geophys Res 105:10147–10160

    Article  Google Scholar 

  • Chou SC, Bustamante JF, Gomes JL (2005) Evaluation of Eta model seasonal precipitation forecasts over South America. Nonlinear Process Geophys 12(4):537–555

    Article  Google Scholar 

  • Chou SC, Lyra A, Pesquero F, Alves LM, Sueiro G, Chagas DJ, Marengo JA, Djurdjevic V (2009) Improvement of Long-term integrations by increasing RCM domain size. In: Challenges In regional-scale climate modelling, twenty-first century, Lund. Proceedings. ISBN 16816471

  • Collini EA, Berbery EH, Barros V, Pyle M (2008) How does soil moisture influence the early stages of the South American monsoon? J Climat 21:195–213

    Article  Google Scholar 

  • Collins M, Tett SFB, Cooper C (2001) The internal climate variability of a HadCM3, a version of the Hadley centre coupled model without flux adjustments. Clim Dyn 17:61–81. doi:10.1007/s003820000094

    Article  Google Scholar 

  • Collins M, Booth BBB, Harris GR, Murphy JM, Sexton DMH, Webb MJ (2006) Towards quantifying uncertainty in transient climate change. Clim Dyn. doi:10.1007/s00382-006-0121-0

  • Collins WV et al (2006b) Radiative forcing by well-mixed greenhouse gases: estimates from climate models in the IPCC AR4. J Geophys Res 111:D14317. doi:10.1029/2005JD006713

    Article  Google Scholar 

  • Collins M, Booth BBB, Bhaskaran B, Harris GR, Murphy JM, Sexton DMH, Webb MJ (2010) Climate model errors, feedbacks and forcings: a comparison of perturbed physics and multi-model ensembles. Clim Dyn. doi:10.1007/s00382-010-0808-0

  • Covey C, AchutaRao KM, Cubasch U, Jones P, Lambert SJ, Mann ME, Phillips TJ, Taylor KE (2003) An overview of results from the coupled model intercomparison project. Global Planet Change 37:103–133

    Article  Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187. doi:10.1038/35041539

    Google Scholar 

  • da Rocha RP, Morales CA, Cuadra SV, Ambrizzi T (2009) Precipitation diurnal cycle and summer climatology assessment over South America: an evaluation of regional climate model version 3 simulations. J Geophys Res 114:D10108. doi:10.1029/2008JD010212

    Article  Google Scholar 

  • Davies HC (1976) A lateral boundary formulation for multi-level prediction models. QJR Meteor Soc 102:405–418

    Google Scholar 

  • Ek MB, Mitchell KE, Lin Y, Rogers E, Grummen P, Koren V, Gayno G, Tarpley JD (2003) Implementation of NOAH land surface advances in the National centers for environmental prediction operational mesoscale Eta model. J Geophys Res 108:8851. doi:10.1029/2002JD003246

    Google Scholar 

  • Fels SB, Schwarzkopf MD (1975) The simplified exchange approximation: a new method for radiative transfer calculations. J Atmos Sci 32:1475–1488

    Article  Google Scholar 

  • Garreaud R, Falvey M (2008) The coastal winds off western subtropical South America in future climate scenarios. Int J Climatol 29:543–554. doi:10.1002/joc.1716

    Article  Google Scholar 

  • Gedney N, Cox P, Douville H, Polcher J, Valdes P (2000) Characterizing land surface schemes to understand their responses to climate change. J Clim 13:3066–3079. doi:10.1175/1520-0442(2000)013<3066:CGLSST>2.0.CO;2

    Article  Google Scholar 

  • Good P, Lowe J, Collins M, Moufouma-Okia W (2008) An objective tropical Atlantic sea surface temperature gradient index for studies of South Amazon dry-season climate variability and change. Philos Trans R Soc Ser B 363:1761–1766

    Article  Google Scholar 

  • Gordon CC et al (2000) The simulation of SST, sea ice extents and ocean heat transport in a version of the Hadley centre coupled model without flux adjustments. Clim Dyn 16:147–168

    Article  Google Scholar 

  • Grimm AM, Tedeschi RG (2009) ENSO and extreme rainfall events in South America. J Clim 22:1589–1609

    Article  Google Scholar 

  • Harris P, Huntingford C, Cox PM (2008) Amazon basin climate under global warming: the role of the sea surface temperature. Philos Trans R Soc Ser B 363:1753–1759

    Article  Google Scholar 

  • Janjić ZI (1979) Forward-backward scheme modified to prevent two grid-interval noise and its application in sigma coordinate models. Contrib Atmos Phys 52:69–84

    Google Scholar 

  • Janjić ZI (1994) The step-mountain Eta coordinate model: further developments of the convection, Viscous sub layer and turbulence closure schemes. Mon Wea Rev 122:927–945

    Article  Google Scholar 

  • Lacis AA, Hansen JE (1974) A parameterization of the absorption of solar radiation in earth’s atmosphere. J Atmos Sci 31:118–133

    Article  Google Scholar 

  • Li W, Fu R, Dickinson RE (2006) Rainfall and its seasonality over the Amazon in the twenty-first century as assessed by the coupled models for the IPCC AR4. J Geophys Res 111:D02111. doi:10.1029/2005JD006355

    Article  Google Scholar 

  • Marengo JA, Miller J, Russell G, Rosenzweig C, Abramopoulos F (1994) Calculations of river-runoff in the GISS GCM: impact of a new land-surface parameterization and runoff routing model on the hydrology of the Amazon river. Clim Dyn 10:349–361

    Google Scholar 

  • Marengo JA, Cavalcanti IFA, Satyamurty P, Trosnikov I, Nobre CA, Bonatti JP, Camargo H, Sampaio G, Sanches MB, Manzi AO, Castro CAC, D’Almeida C, Pezzi LP, Candido L (2003) Assessment of regional seasonal rainfall predictability using the CPTEC/COLA atmospheric GCM. Clim Dyn 21:459–475

    Google Scholar 

  • Marengo JA, Soares W, Saulo C, Nicolini M (2004) Climatology of the LLJ east of the Andes as derived from the NCEP reanalyses. J Clim 17:2261–2280

    Article  Google Scholar 

  • Marengo JA, Nobre C, Tomasella J, Oyama M, Sampaio G, Camargo H, Alves L, Oliveira R (2008) The drought of Amazonia in 2005. J Clim 21:495–516

    Article  Google Scholar 

  • Marengo JA, Jones R, Alves LM, Valverde MC (2009a) Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int J Climatol 15:2241–2255

    Article  Google Scholar 

  • Marengo JA, Ambrizzi T, Rocha RP, Alves LM, Cuadra SV, Valverde MC, Ferraz SET, Torres RR, Santos DC (2009b) Future change of climate in South America in the late XXI century: intercomparison of scenarios from three regional climate models. Clim Dyn. doi:10.1007/s00382-009-0721-6

  • Meehl GA, Covey C, Taylor KE, Delworth T, Stouffer RJ, Latif M, McAvaney B, Mitchell JFB (2007) THE WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Amer Meteor Soc 88:1383–1394

    Article  Google Scholar 

  • Menéndez C, de Castro M, Boulanger J-P, D’Onofrio A, Sanchez E, Sörensson AA, Blazquez J, Elizalde A, Jacob D, Le Treut H, Li ZX, Núñez MN, Pessacg N, Pfeiffer S, Rojas M, Rolla A, Samuelsson P, Solman SA, Teichmann C (2010) Downscaling extreme month-long anomalies in southern South America. Climat Chang 98:379–403. doi:10.1007/s10584-009-9739-3

    Article  Google Scholar 

  • Mesinger F (1977) Forward-backward scheme, and its use in a limited area model. Contrib Atmos Phys 50:200–210

    Google Scholar 

  • Mesinger F (1984) A blocking technique for representation of mountains in atmospheric models. Rivista di Meteorologia Aeronautica 44(1–4):195–202

    Google Scholar 

  • Mesinger F, Janjić ZI, Ničković S, Gavrilov D, Deaven DG (1988) The step-mountain coordinate: model description and performance for cases of Alpine lee cyclogenesis and for a case of Appalachian redevelopment. Mon Wea Rev 116:1493–1518

    Article  Google Scholar 

  • Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768–772

    Article  Google Scholar 

  • Murphy JMB, Booth BBB, Collins M, Harris GR, Sexton DMH, Webb MJ (2007) A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles. Philos Trans Soc R Ser A 365:1993–2028

    Article  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grubler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special report on emissions scenarios. Cambridge University Press, United Kingdom, p 599

    Google Scholar 

  • New M, Hulme M, Jones P (2000) Representing twentieth-century space time climate variability. part II: development of 1901–1996 monthly grids of terrestrial surface climate. J Clim 13:2217–2238

    Article  Google Scholar 

  • Núñez M, Solman S, Cabré M (2006) Mean climate and annual cycle in a regional climate change experiment over Southern South America. II: climate change scenarios (2081–2090). In: Proceedings of 8 ICSHMO, 24–28 April 2006. Foz do Iguacu, Brazil, pp 325–331

  • Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J App Meteorol 9:857–861

    Article  Google Scholar 

  • Pesquero JF, Chou SC, Nobre CA, Marengo JA (2009) Climate downscaling over South America for 1961–1970 using the Eta model. Theor Appl Climatol. doi:10.1007/s00704-009-0123-z

  • Pisnichenko IA, Tarasova TA (2009) Climate version of the ETA regional forecast model. Evaluating the consistency between the ETA model and HadAM3P global model. Theor Appl Climatol. doi:10.1007/s00704-009-0139-4

  • Pope V, Gallani M, Rowtree P, Stratton R (2000) The impact of new physical parameterizations in the Hadley centre climate model. Clim Dyn 16:123–146

    Article  Google Scholar 

  • Rauscher SA, Seth A, Qian J-H, Camargo SJ (2006) Domain choice in an experimental nested modeling prediction system for South America. Theor Appl Climatol 86:229–246. doi:10.1007/s00704-006-0206-z

    Article  Google Scholar 

  • Rauscher SA, Seth A, Liebmann B, Qian J-H, Camargo SJ (2007) Regional climate model simulated timing and character of seasonal rains in South America. Mon Wea Rev 135:2642–2657

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Climate 15:1609–1625

    Article  Google Scholar 

  • Rojas M, Seth A (2003) Simulation and sensitivity in a nested modeling system for South America, part II: GCM boundary forcing. J Climat 16:2454–2471

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with El Niño/Southern Oscillation. Mon Wea Rev 115:1606–1626

    Article  Google Scholar 

  • Satyamurty P, Nobre CA, Dias PLS (1998) South America. In: Karoly DJ, Vincent DG (eds) Meteorology of the southern hemisphere. American Meteorology Society, Boston, pp 243–282

    Google Scholar 

  • Saulo C, Nicolini M, Chou SC (2000) Model characterization of the South American low-level flow during the 1997–1998 spring-summer seasons. Clim Dyn 16:867–881

    Article  Google Scholar 

  • Sestini MF, Alvalá RCS, Mello EMK, Valeriano DM, Chou SC, Nobre CA, Paiva JAC, Reimer ÉS (2002) Vegetation map elaboration for use in numerical models (“Elaboração de mapas de vegetação para utilização em modelos meteorológicos e hidrológicos”) internal report. Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP. Brazil

    Google Scholar 

  • Seth A, Rojas M (2003) Simulation and sensitibity in a nested modeling system for South America. part I: reanalysis boundary forcing. J Clim 16:2437–2453

    Article  Google Scholar 

  • Seth A, Rauscher SA, Camargo SJ, Qian J-H, Pal JS (2007) RegCM3 regional climatologies for South America using reanalysis and ECHAM global model driving fields. Clim Dyn 28:461–480. doi:10.1007/s00382-006-0191-z

    Article  Google Scholar 

  • Silva VBS, Berbery EH (2006) Intense rainfall events affecting the La Plata basin. J Hydrometeor 7:769–787

    Article  Google Scholar 

  • Solman S, Nuñez M, Cabré MF (2007) Regional climate change experiments over southern South America. I: present climate. Clim Dyn 30:533–552. doi:10.1007/s00382-007-0304-3

    Article  Google Scholar 

  • Stainforth DA et al (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433:403–406

    Article  Google Scholar 

  • Stern WF, Miyakoda K (1995) Feasibility of seasonal forecasts inferred from multiple GCM simulations. J Clim 8:1071–1085

    Google Scholar 

  • Trenberth KE (1997) The definition of El Ninõ. Bull Amer Meteor Soc 78:2771–2777

    Article  Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, pp 235-336

  • Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Urrutia R, Vuille M (2009) Climate change projections for the tropical andes using a regional climate model: temperature and precipitation simulations for the end of the twenty-first century. J Geophys Res 114:D2. D02108

    Article  Google Scholar 

  • Veljović K, Rajković B, Fennessy MJ, Altshuler EL, Mesinger F (2010) Regional climate modeling: should one attempt improving on the large scales? Lateral boundary condition scheme: any impact? Meteor Zeitschrift 19:237–246. doi:10.1127/0941-2948/2010/0460

    Google Scholar 

  • Villar JCE, Ronchail J, Guyot JL, Cochonneau G, Filizola N, Waldo L, De Oliveira E, Pombosa R, Vauchel P (2008) Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int J Climatol Published online in Wiley InterScience

  • Zhao Q, Black TL, Baldwin ME (1997) Implementation of the cloud prediction scheme in the Eta model at NCEP. Weather Forecast 12:697–712

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the UNDP Project BRA/05/G31 and the FCO GOF-Dangerous Climate Change DCC project from the UK. SC and JM were funded by the Brazilian National Research Council CNPq. Additional funds came from the Brazilian programs Rede-CLIMA, the National Institute of Science and Technology for Climate Change (INCT-CC), and from the European Community’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement no. 212492 (CLARIS LPB—A Europe-South America Network for Climate Change Assessment and Impact Studies in La Plata Basin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sin Chan Chou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, S.C., Marengo, J.A., Lyra, A.A. et al. Downscaling of South America present climate driven by 4-member HadCM3 runs. Clim Dyn 38, 635–653 (2012). https://doi.org/10.1007/s00382-011-1002-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1002-8

Keywords

Navigation