Climate Dynamics

, Volume 38, Issue 1–2, pp 175–188

A multi-proxy approach for revealing recent climatic changes in the Russian Altai

  • Olga V. Sidorova
  • Matthias Saurer
  • Vladimir S. Myglan
  • Anja Eichler
  • Margit Schwikowski
  • Aleksander V. Kirdyanov
  • Marina V. Bryukhanova
  • Oksana V. Gerasimova
  • Ivan A. Kalugin
  • Andrey V. Daryin
  • Rolf T. W. Siegwolf
Article

Abstract

For the first time we present a multi-proxy data set for the Russian Altai, consisting of Siberian larch tree-ring width (TRW), latewood density (MXD), δ13C and δ18O in cellulose chronologies obtained for the period 1779–2007 and cell wall thickness (CWT) for 1900–2008. All of these parameters agree well between each other in the high-frequency variability, while the low-frequency climate information shows systematic differences. The correlation analysis with temperature and precipitation data from the closest weather station and gridded data revealed that annual TRW, MXD, CWT, and δ13C data contain a strong summer temperature signal, while δ18O in cellulose represents a mixed summer and winter temperature and precipitation signal. The temperature and precipitation reconstructions from the Belukha ice core and Teletskoe lake sediments were used to investigate the correspondence of different independent proxies. Low frequency patterns in TRW and δ13C chronologies are consistent with temperature reconstructions from nearby Belukha ice core and Teletskoe lake sediments showing a pronounced warming trend in the last century. Their combination could be used for the regional temperature reconstruction. The long-term δ18O trend agrees with the precipitation reconstruction from the Teletskoe lake sediment indicating more humid conditions during the twentieth century. Therefore, these two proxies could be combined for the precipitation reconstruction.

Keywords

Russian Altai Dendrochronology Stable isotopes Ice core Lake sediments Climate 

References

  1. Adamenko MF (1978) Dynamics of larch tree growth as indicator of thermical regimes of summer in the Altai Mountain. Regional geographical investigations in the Western Siberia. Novosibirsk, Nauka, pp 20–23 (in Russian)Google Scholar
  2. Alpatev AM, Arkhangelskiy AM, Podoplelov NY, Stepanov AY (1976) Physical geography of USSR: Asian part, Moscow (in Russian)Google Scholar
  3. Ammann CM, Wahl ER (2007) The importance of the geophysical context in statistical evaluations of climate reconstruction procedures. Climatic Change 85:71–88. doi:10.1007/s10584-007-9276-x CrossRefGoogle Scholar
  4. Barber VA, Juday GP, Finney B (2000) Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405:668–673CrossRefGoogle Scholar
  5. Blackman RB, Tukey J (1958) The measurement of power spectra. Dover, New YorkGoogle Scholar
  6. Boettger T, Haupt M, Knöller K, Weise SM, Waterhouse JS et al (2007) Wood cellulose preparation methods and mass spectrometric analyses of δ13C, δ18O, and non exchangeable 2H values in cellulose, sugar and starch: an interlaboratory comparison. Anal Chem 79:4603–4612CrossRefGoogle Scholar
  7. Bradley RS (1999) Paleoclimatology. Reconstructing climate of the quaternary. Int Geophys Ser 64:613 pGoogle Scholar
  8. Briffa KR, Jones PD, Schweingruber FH, Karlen W, Shiyatov SG (1996) Tree-ring variables as proxy indicators: problems with low-frequency signals. In: Climate change and forcing mechanisms of the last 2000 years, vol 141. Springer, Berlin, pp 9–41Google Scholar
  9. Briffa K, Schweingruber F, Jones P, Osborn T (1998) Reduced sensitivity of recent tree growth to temperature at high northern latitudes. Nature 391:678–682CrossRefGoogle Scholar
  10. Cook ER, Kairiukstis LA (eds) (1990) Methods of dendrochronology. Applications in the environmental sciences. Kluwer Acad. Publ, Dordrecht, Boston, London, p 394 pGoogle Scholar
  11. Cook ER, Krusic PJ (2008) A tree-ring standardization program based on detrending and autoregressive time series modeling, with interactive graphics (ARSTAN)Google Scholar
  12. Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703CrossRefGoogle Scholar
  13. D’Arrigo R, Wilson R, Liepert B, Cherubini P (2008) On the “divergence problem” in northern forests: a review of the tree-ring evidence and possible causes. Global Planet Change 60:289–305CrossRefGoogle Scholar
  14. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468CrossRefGoogle Scholar
  15. Efimtsev NA (1958) Climatic studies. In: Proceeding of the Tuva multipurpose expedition: environment of the Tuva autonomous region, vol 3. AS USSR Press, Moscow, pp 46–65 (in Russian)Google Scholar
  16. Eichler A, Oliver S, Henderson K, Laube A, Beer J, Papina T, Gäggeler HW, Schwikowski M (2009) Temperature response in the Altai region lags solar forcing. Geophys Res Lett 36:L01808. doi:10.1029/2008GL035930 CrossRefGoogle Scholar
  17. Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies and the reconstruction of past temperature variability. Science 295:2250–2253CrossRefGoogle Scholar
  18. Esper J, Frank DC, Battipaglia G, Büntgen U, Holert C, Siegwolf R, Saurer M (2010) Low frequency signals in tree-ring stable isotopes. Global Biogeochem Cycles (submitted)Google Scholar
  19. Etien N, Daux V, Masson-Delmotte V, Mestre O, Stievenard M, Guillemin MT, Boettger T, Breda N, Haupt M, Perraud PP (2009) Summer maximum temperature in northern France over the past century: instrumental data versus multiple proxies (tree-ring isotopes, grape harvest dates and forest fires. Clim Change 94:429–456CrossRefGoogle Scholar
  20. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Ann Rev Plant Physiol Plant Mol Biol 40:503–537CrossRefGoogle Scholar
  21. Francey RJ, Allison CE, Etheridge DM (1999) A 1000-year high precision record of δ13C in atmospheric CO2. Tellus B 51:170–193Google Scholar
  22. Gagen M, McCarrolll D, Edouard J-L (2006) Combining tree-ring width, density and stable carbon isotope series to enhance the climate signal in tree-rings: and example from the French Alps. Climatic Change. doi:10.1007/s10584-006-9097-3
  23. Gagen MH, McCarrol D, Robertson I, Loader NJ, Jalkanen R (2008) Do tree-ring δ13C series from Pinus sylvestris in northern Fennoscandia contain long-term non-climatic trends? Chem Geol 252:42–51CrossRefGoogle Scholar
  24. Grudd H (2008) Torneträsk tree-ring width and sensitz AD 500–2004: a test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Clim Dyn 31:843–857. doi:10.1007/s00382-007-0358-2 CrossRefGoogle Scholar
  25. Helle G, Schleser GH (2004) Beyond CO2-fixation by rubisco—an interpretation of 13C/12C variations in tree rings from novel intra-seasonal studies on broad-leaf trees. Plant. Cell Environ 27(3):367–380CrossRefGoogle Scholar
  26. Henderson K, Laube A, Gäggeler HW, Olivier S, Papina T, Schwikowski M (2006) Temporal variations of accumulation and temperature during the past two centuries from Belukha ice core, Siberian Altai. Geophys Res 1:11. doi:10.1029/2005JD005819 Google Scholar
  27. Hilasvuori E, Berninger F, Sonninen E, Tuomenvirta H and Jungner H (2009) Stability of climate signal in carbon and oxygen isotope records and ring width from Scots pine (Pinus sylvestris L.) in Finland. Quat Sci 24(5):469–480Google Scholar
  28. Ilyashuk BP, Ilyshuk EA (2007) Chironomid record of late quaternary climatic and environmental changes from two sites in Central Asia (Tuva Republic, Russia)—local, regional or global causes? Quat Sci Rev 26:705–731CrossRefGoogle Scholar
  29. Jones PD, Briffa KR, Barnett TP, Tett SFB (1998) High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with general circulation model control-run temperatures. Holocene 8:455–471CrossRefGoogle Scholar
  30. Kalugin I, Daryin A, Smolyaninova L, Andreev A, Diekmann B, Khlystov O (2007) 800-yr-long records of annual air temperature and precipitation over southern Siberia inferred from Teletskoye lake sediments. Quat Res 67:400–410CrossRefGoogle Scholar
  31. Kirdyanov AV, Treydte KS, Nikolaev A, Helle G, Schleser GH (2008) Climate signals in tree-ring width, density and 13C from larch in Eastern Siberia (Russia). Cem Geol 252:31–41CrossRefGoogle Scholar
  32. Kress A (2009) Stable isotope dendroclimatology in the Swiss Alps: a 1200-year record from European larch. Dissertation ETH No. 18535, 113 pGoogle Scholar
  33. Loader NJ, Switsur VR, Field EM, Carter AHC (1995) High resolution stable isotope analysis of tree rings: implications of microdendroclimatology for palaeoenvironmental research. Holocene 1(5):457–460CrossRefGoogle Scholar
  34. Loader NJ, Robertson I, Barker AC, Switsur VR, Waterhouse JS (1997) Improved technique for the batch processing of small whole wood samples to alpha-cellulose. Chem Geol 136:313–317CrossRefGoogle Scholar
  35. Loader NJ, Helle G, Los S, Lehmkuhl F, Schleser GH (2010) Twentieth-century summer temperature variability in the southern Altai Mountains: A carbon and oxygen isotope study of tree-rings. Holocene. doi:10.1177/0959683610369507
  36. Mann ME and Jones PD (2003) Global Surface Temperatures over the Past Two Millennia GRL Vol. 3, N 15, 1820. doi:10.1029/2003GL017814
  37. Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787CrossRefGoogle Scholar
  38. Mann M, Zhang Z, Hughes MK, Bradley RS, Miller SH, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci 105(36):13252–13257. doi:10.1073/pnas.0805721105 Google Scholar
  39. McCarroll D, Loader NJ (2004) Stable isotopes in tree-rings. Quat Sci Rev 23:771–801CrossRefGoogle Scholar
  40. McCarroll D, Gagen MH, Loader NJ, Robertson I, Anchukaitis KJ, Los S, Young G, Jalkanen R, Kirchhefer A, Waterhouse JS (2009) Correction of tree-ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere. Geochimica et Cosmochimica Acta. doi:10.1016/j.ca.2008.11.041
  41. Myglan VS, Oidupaa OCh, Kirdyanov AV, Vaganov EA (2008) 1929-year tree-ring chronology for Altai-Sayan region (Western Tuva). J Archeol Ethnogr Anthropol 4(36):25–31 (in Russian)Google Scholar
  42. Myglan VS, Ovchinnikov DV, Vaganov EA, Bykov NI, Gerasimova OV, Sidorova OV, Silkin PP (2009) Construction of 1772-year tree-ring width chronology for Altai Republic. Izvestiya RAN Serija Geograficheskaja 6:70–77 (in Russian)Google Scholar
  43. Naurzbaev MM, Vaganov EA, Sidorova OV, Schweingruber FH (2002) Summer temperatures in eastern Taimyr inferred from a 2427-year late-Holocene tree-ring chronology and earlier floating series. Holocene 12(6):727–736CrossRefGoogle Scholar
  44. Nye JF (1963) Correction factor for accumulation measured by the thickness of the annual layers in ice sheets. J Glaciol 4(36):785–788Google Scholar
  45. Oidupaa OC, Vaganov EA, Naurzbaev MM (2004) Long-term summer temperature changes and tree radial growth of larch from the upper tree linein Altai-Sayan region. Lesovedenie 6:14–24 (in Russian)Google Scholar
  46. Ovchinnikov DV, Panushkina IP, Adamenko MF (2002) Millennial tree-ring chronology of larch from the Altai Mountain and application for temperature reconstruction. Geogr Nat Resour 1:102–108Google Scholar
  47. Panushkina IP, Ovchinnikov DV, Adamenko MF (2005) Mixed response of decadal variability in larch tree-ring chronologies from upper tree-lines of the Russian Altai. Tree Ring Res 61(1):33–42. doi:10.3959/1536-1098-61.1.33 CrossRefGoogle Scholar
  48. Robertson I, Froyd CA, Gagen M, Hicks S (2009) Climates of the past: evidence from natural and documentary archives. J Quat Sci 24(5):411–414CrossRefGoogle Scholar
  49. Saurer M, Siegwolf RTW (2007) Human impacts on tree-ring growth reconstructed from stable isotopes. In: Dawson TE, Siegwolf RTW (eds) Stable isotopes as indicators of ecological change. Terrestrial ecology series. Elsevier, Amsterdam, Boston, pp 49–62CrossRefGoogle Scholar
  50. Saurer M, Borella S, Schweingruber F, Siegwolf R (1997) Stable isotopes in tree-rings of beech: climatic versus site-related influences. Trees 11:291–297CrossRefGoogle Scholar
  51. Saurer M, Robertson I, Siegwolf R, Leuenberger M (1998) Oxygen isotope analysis of cellulose: an interlaboratory comparison. Anal Chem 70:2074–2080CrossRefGoogle Scholar
  52. Saurer M, Schweingruber F, Vaganov EA, Schiyatov SG, Siegwolf R (2002) Spatial and temporal oxygen isotope trends at the northern tree-line in Eurasia. Geophys Res Letts 29(9). doi:10.1029/2001GL013739
  53. Schweingruber FH (1996) Tree-rings and environment dendroecology. Paul Haupt Publ, Bern, Stuttgart, Vienna, p 609 ppGoogle Scholar
  54. Schweingruber FH, Karlen W, Shiyatov SG (1996) Tree-ring variables as proxy indicators: problems with low-frequency signals. Climate change and forcing mechanisms of the last 2000 years. NATO ASI Series, vol 141. Springer, Berlin, pp 9–41Google Scholar
  55. Selegei V, Dehandschutter B, Klerkx J, Vysotsky E (2001) The physical and geological environment of lake Teletskoye. Royal museum of central Africa, Tervuren, Belgium. Ann Sci Geol 105:310Google Scholar
  56. Sevastyanov VV (1998) Climate of high altitude Altai and Sayan region. Tomsk, 202 p (in Russian)Google Scholar
  57. Sidorova OV (2003) Long-term climatic changes and the larch radial growth on the northern Middle Siberia and the North-Eastern Yakutia in the Late Holocene. Abs. of PhD dissertation, 2003, 18 p (in Russian)Google Scholar
  58. Sidorova OV, Siegwolf RTW, Saurer MM, Naurzbaev MM, Vaganov EA (2008) Isotopic composition (δ13C, δ18O) in Siberian tree-ring chronology. Geophys Res Biogeo 113:G02019. doi:10.1029/2007JG000473 CrossRefGoogle Scholar
  59. Sidorova OV, Siegwolf RTW, Saurer M, Shashkin AV, Knorre AA, Prokushkin AS, Vaganov EA, Kirdyanov AA (2009) Do centennial tree-ring and stable isotope trends of Larix gmelinii (Rupr.) Rupr. indicate increasing water shortage in the Siberian north? Oecologia 161:825–835. doi:10.1007/s00442-009-1411-0 Google Scholar
  60. Sidorova OV, Siegwolf RTW, Saurer MM, Naurzbaev MM, Shashkin AV, Vaganov EA (2010) Spatial patterns of climatic changes in the Eurasian north reflected in Siberian larch tree-ring parameters and stable isotopes. Global Change Biol 16:1003–1018. doi:10.1111/j.1365-2486.2009.02008.x
  61. Skomarkova MV, Vaganov EA, Mund M, Knohl A, Linke P, Boerner A, Schulze E-D (2006) Inter-annual and seasonal variability of radial growth, wood density and carbon isotope ratios in tree-rings of beech (Fagus sylvatica) growing in Germany and Italy. Trees 20:571–586CrossRefGoogle Scholar
  62. Treydte K, Schleser GH, Helle G, Winiger M, Frank DC, Haug GH, Esper J (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440:1179–1182CrossRefGoogle Scholar
  63. Vaganov EA, Hughes MK, Kirdyanov AV, Schweingruber F, Silkin PP (1999) Influence of snowfall and melt timing on tree growth in Subarctic Eurasia. Nature 400:149–151CrossRefGoogle Scholar
  64. Vaganov EA, Hughes MK, Shashkin AV (2006) Growth dynamics of tree-rings: an image of past and future environments. Springer, New York 354 pGoogle Scholar
  65. Wigley T, Briffa K, Jones P (1984) On the average value of correlated time series, with application in dendroclimatology and hydrometeorology. J Clim Appl Met 23:201–213CrossRefGoogle Scholar
  66. Wilmking M, D’Arrigo R, Jacoby G, Juday G (2005) Divergent growth responses in circumpolar boreal forests. Geophys Res Lett 32:L15715. doi:10.1029/2005GLO23331

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Olga V. Sidorova
    • 1
    • 2
  • Matthias Saurer
    • 1
  • Vladimir S. Myglan
    • 4
  • Anja Eichler
    • 1
    • 3
  • Margit Schwikowski
    • 1
    • 3
  • Aleksander V. Kirdyanov
    • 2
  • Marina V. Bryukhanova
    • 2
  • Oksana V. Gerasimova
    • 4
  • Ivan A. Kalugin
    • 5
  • Andrey V. Daryin
    • 5
  • Rolf T. W. Siegwolf
    • 1
  1. 1.Paul Scherrer InstituteVilligenSwitzerland
  2. 2.V.N. Sukachev Institute of Forest SB RASKrasnoyarskRussia
  3. 3.Oeschger Centre for Climate Change Research, University of BernBernSwitzerland
  4. 4.Siberian Federal UniversityKrasnoyarskRussia
  5. 5.Sobolev Institute of Geology and MineralogyNovosibirskRussia

Personalised recommendations