Climate Dynamics

, Volume 37, Issue 9–10, pp 1869–1887 | Cite as

Teleconnections in a warmer climate: the pliocene perspective

  • Sonali P. ShuklaEmail author
  • Mark A. Chandler
  • David Rind
  • Linda E. Sohl
  • Jeff Jonas
  • Jean Lerner


Migrations toward altered sea surface temperature (SST) patterns in the Indo-Pacific region are present in the recent observational record and in future global warming projections. These SSTs are in the form of “permanent” El Niño-like (herein termed “El Padre”) and Indian Ocean Dipole (IOD)-like patterns. The Early Pliocene Warm Period, which bears similarity to future warming projections, may have also exhibited these Indo-Pacific SST patterns, as suggested by regional terrestrial paleo-climatic data and general circulation model studies. The ability to corroborate this assessment with paleo-data reconstructions is an advantage of the warm Pliocene period that is not afforded by future warming scenarios. Thus, the Pliocene period provides us with a warm-climate perspective and test bed for understanding potential changes to future atmospheric interactions given these altered SST states. This study specifically assesses how atmospheric teleconnections from El Padre/IOD SST patterns are generated and propagate to create the regional climate signals of the Pliocene period, as these signals may be representative of future regional climatic changes as well. To do this, we construct a holistic diagnostic rubric that allows us to examine atmospheric teleconnections, both energetically and dynamically, as produced by a general circulation model. We incorporate KE′, a diagnostic adapted from the eddy kinetic energy generation field, to assess the available energy transferred to these teleconnections. Using this methodology, we found that relative to our Modern Control experiments, weaker atmospheric teleconnections prevail under warm Pliocene conditions, although pathways of propagation still appear directed toward the southwestern United States from our tropical Pacific sector forcing. Propagation directly emanating from the Indian Ocean forcing sector appears to be largely blocked, although indirect teleconnective pathways appear traversing the Asian continent toward the North Pacific. The changes in the atmospheric circulation of Indian Ocean region in response to the underlying specified SST forcing (and indicated by Pliocene paleo-data) may have a host of implications for energy transfer out of and into the region, including interactions with the Asian jet stream and changes to the seasonal monsoon cycle. These interactions warrant further study in both past and future warm climate scenarios.


Teleconnections Pliocene El Padre Indian Ocean dipole El Niño 



Funding for this research was provided by the National Science Foundation, ATM-0323516 (to Chandler), and the NASA Climate Program.


  1. Abram NJ, Gagan MK, Cole JE, Hantoro WS, Mudelsee M (2008) Recent intensification of tropical climate variability in the Indian Ocean. Nature Geoscience 1:849–853CrossRefGoogle Scholar
  2. Annamalai H, Okajima H, Watanabe M (2007) Possible impact of the Indian Ocean SST on the northern hemisphere circulation during El Niño. J Clim 20:3164–3189CrossRefGoogle Scholar
  3. Ashok K, Guan Z, Yamagata T (2001) Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys Res Lett 28:4499–4502CrossRefGoogle Scholar
  4. Ashok K, Guan Z, Saji NH (2004) Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. J Clim 17:3141–3155CrossRefGoogle Scholar
  5. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi: 10.1029/2006JC003798 CrossRefGoogle Scholar
  6. Balachandran NK, Rind D (1995) Modeling the effects of UV variability and the QBO on the troposphere/stratosphere system. Part I: the middle atmosphere. J Clim 8:2058–2079CrossRefGoogle Scholar
  7. Branstator Grant (1985) Analysis of general circulation model sea-surface temperature anomaly simulations using a linear model. Part I: forced solutions. J Atmos Sci 42:2225–2241CrossRefGoogle Scholar
  8. DeWeaver E, Nigam S (2004) On the forcing of ENSO teleconnections by anomalous heating and cooling. J Clim 17:3225–3235CrossRefGoogle Scholar
  9. Dowsett HJ (2007) The PRISM palaeoclimate reconstruction and Pliocene sea-surface temperature. In: Williams M, Haywood AM, Gregory FJ, Schmidt DN (eds) Deep time perspectives on climate change: marrying the signal from computer models and biological proxies. The Micropalaeontological Society, Special Publications, The Geological Society, London, pp 459–480Google Scholar
  10. Held IM, Lyons SW, Nigam S (1989) Transients and the extra-tropical response to El Niño. J Atmos Sci 46(1):163–174CrossRefGoogle Scholar
  11. Hoerling MP, Hurrell JW, Xu T, Bates GT, Phillips AS (2004) Twentieth century North Atlantic climate change. Part II: understanding the effect of Indian Ocean warming. Clim Dyn 23:391–405CrossRefGoogle Scholar
  12. Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196CrossRefGoogle Scholar
  13. Izumo T, Vialard J, Lengaigne M, De Boyer Montegut C, Behera SK, Luo J, Cravatte S, Masson S, Yamagata T (2010) Influence of the state of the Indian Ocean dipole on the following year’s El Niño. Nature Geosci 3:168–172CrossRefGoogle Scholar
  14. Kao H-Y, Yu J-Y (2009) Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J Clim 22:615–632CrossRefGoogle Scholar
  15. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Climate change 2007—the physical science basis, contribution of working group I to the fourth assessment report of the IPCC. IPCC, Geneva, pp 749–843Google Scholar
  16. Molnar P, Cane MA (2002) El Niño’s tropical climate and teleconnections as a blueprint for pre-ice age climates. Paleoceanogr 17(2):AN1021Google Scholar
  17. Molnar P, Cane MA (2007) Early Pliocene (pre-ice age) El Niño-like global climate: which El Niño? Geosphere 3(5):337–365CrossRefGoogle Scholar
  18. Plumb RA (1985) On the three-dimensional propagation of stationary waves. J Atmos Sci 42:217–229CrossRefGoogle Scholar
  19. Ravelo AC (2008) Lessons from the Pliocene warm period and the onset of northern hemisphere glaciation. Eos Trans AGU 89(53):PP23E-01Google Scholar
  20. Ravelo AC, Dekens PS, McCarthy M (2006) Evidence for El Niño-like conditions during the Pliocene. GSA Today 16:4–11CrossRefGoogle Scholar
  21. Rind D, Demenocal P, Russell GL, Sheth S, Collins D, Schmidt GA, Teller J (2001a) Effects of glacial meltwater in the GISS coupled atmosphere-ocean model: Part I: North Atlantic deep water response. J Geophys Res 106:27335–27354CrossRefGoogle Scholar
  22. Rind D, Russell GL, Schmidt GA, Sheth S, Collins D, Demenocal P, Teller J (2001b) Effects of glacial meltwater in the GISS coupled atmosphere-ocean model: Part II: a bi-polar seesaw in Atlantic deep water production. J Geophys Res 106:27355–27366CrossRefGoogle Scholar
  23. Rind D, Perlwitz Ju, Lonergan P (2005) AO/NAO response to climate change: 1 respective influences of stratospheric and tropospheric climate changes. J Geophys Res 110:D12107CrossRefGoogle Scholar
  24. Rind D, Lerner J, Jonas J, McLinden C (2007) The effects of resolution and model physics on tracer transports in the NASA Goddard Institute for space studies general circulation models. J Geophys Res 112:D09315CrossRefGoogle Scholar
  25. Schmidt GA, Ruedy R, Hansen JE, Aleinov I, Bell N, Bauer M, Bauer S, Cairns B, Canuto V, Cheng Y, Del Genio A, Faluvegi G, Friend AD, Hall TM, Hu Y, Kelley M, Kiang NY, Koch D, Lacis AA, Lerner J, Lo KK, Miller RL, Nazarenko L, Oinas V, Perlwitz Ja, Perlwitz Ju, Rind D, Romanou A, Russell GL, Mki Sato, Shindell DT, Stone PH, Sun S, Tausnev N, Thresher D, Yao M-S (2006) Present day atmospheric simulations using GISS ModelE: comparison to in situ, satellite and reanalysis data. J Clim 19:153–192. doi: 10.1175/JCLI3612.1 CrossRefGoogle Scholar
  26. Seager R, Ting MF, Held I, Kushnir Y, Lu J, Vecchi GA, Huang HP, Harnik N, Leetmaa A, Lau NC, Li CH, Velez J, Naik N (2007) Model projections of an imminent transition to a more arid climate in Southwestern North America. Science 316:1181–1184. doi: 10.1126/science.1139601 CrossRefGoogle Scholar
  27. Shindell DT, Grenfell JL, Rind D, Grewe V, Price C (2001) Chemistry-climate interactions in the Goddard Institute for space studies general circulation model: 1. Tropospheric chemistry model description and evaluation. J Geophys Res 106:8047–8076CrossRefGoogle Scholar
  28. Shukla SP, Chandler MA, Jonas J, Sohl LE, Mankoff K, Dowsett H (2009) Impact of a permanent El Niño (El Padre) and Indian Ocean dipole in warm Pliocene climates. Paleoceanogr 24:PA2221Google Scholar
  29. Simmons AJ, Wallace JM, Branstator GW (1983) Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J Atmos Sci 40(6):1363–1392CrossRefGoogle Scholar
  30. Ting MF, Hoerling MP (1993) Dynamics of stationary wave anomalies during the 1986/87 El Niño. Clim Dyn 9:147–164CrossRefGoogle Scholar
  31. Ting M, Sardeshmukh PD (1993) Factors determining the extra-tropical response to equatorial diabatic heating anomalies. J Atmos Sci 50(6):907–918CrossRefGoogle Scholar
  32. Ting M, Hoerling MP, Xu T, Kumar A (1996) Northern hemisphere teleconnection patterns during extreme phases of the zonal-mean circulation. J Clim 9:2614–2633CrossRefGoogle Scholar
  33. Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau NC, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103:14291–14324CrossRefGoogle Scholar
  34. Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340. doi: 10.1175/JCLI4258.1 CrossRefGoogle Scholar
  35. Wara MW, Ravelo AC, Delaney ML (2005) Permanent El Niño-like conditions during the Pliocene warm period. Science 309:758–761CrossRefGoogle Scholar
  36. Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman BP, Jin F-F (2009) El Niño in a changing climate. Nature 461:511–515CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Sonali P. Shukla
    • 1
    Email author
  • Mark A. Chandler
    • 2
  • David Rind
    • 3
  • Linda E. Sohl
    • 2
  • Jeff Jonas
    • 2
  • Jean Lerner
    • 2
  1. 1.Deptartment of Earth and Environmental Sciences and the NASA Goddard Institute for Space StudiesColumbia UniversityNew YorkUSA
  2. 2.Center for Climate Systems ResearchColumbia UniversityNew YorkUSA
  3. 3.Goddard Institute for Space StudiesNational Aeronautics and Space AdministrationNew YorkUSA

Personalised recommendations