Climate Dynamics

, Volume 37, Issue 11–12, pp 2181–2198 | Cite as

Absorbing aerosols facilitate transition of Indian monsoon breaks to active spells

  • M. G. ManojEmail author
  • P. C. S. Devara
  • P. D. Safai
  • B. N. Goswami


While some long breaks of monsoon intraseasonal oscillations (MISOs) are followed by active spells (BFA), some others are not (BNFA). The circulation during BFA (BNFA) cases helps (prevents) accumulation of absorbing aerosols over central India (CI) resulting in almost three times larger Aerosol Index (AI) over CI, during BFA cases compared to BNFA cases. A seminal role played by the absorbing aerosols in the transition from break to active spells is unraveled through modification of the north–south temperature gradient at lower levels. The meridional gradient of temperature at low level (∆T) between aerosol-rich CI and pristine equatorial Indian Ocean is large (>6°C) and sustains for long time (>10 days) during BFA leading to significant moisture convergence to CI. The stability effect arising from surface cooling by the aerosols is overcome by the enhanced moisture convergence creating a moist static unstable atmosphere conducive for the large-scale organized convection over the CI region leading to the resurgence of active spells. The moisture convergence induced by ∆T was also able to overcome possible aerosol indirect effect (Twomey effect) and initiate deep convection and transition to active condition. During BNFA cases, however the maximum ∆T, which was weaker than the BFA cases by more than 1.5°C, could not sustain required moisture convergence and failed to lead to a sustained active spell. Using data from MODIS (MODerate resolution Imaging Spectroradiometer) onboard Terra and several other input parameters from various satellites for the period 2000–2009, the aerosol induced radiative forcing representative of two regions—the CI to the north and the pristine ocean to the south—were estimated and support the differences in observed ∆T during the two cases. Our results highlight the need for proper inclusion of absorbing aerosols in dynamical models for simulation of the observed variability of MISOs and their extended range prediction.


Aerosols Radiative forcing Indian summer monsoon Intraseasonal oscillation Regional climate 



The authors wish to acknowledge Dr. A. K. Sahai for the help rendered in processing the data and Ms. Susmitha Joseph for lending hand in the analysis of data at various stages. Dr. G. Pandithurai, Dr. Thara Prabhakaran and Mr. S. Dipu helped in the radiative transfer calculations. One of the authors (MGM) is thankful to the Council of Scientific and Industrial Research (CSIR), Government of India for awarding research fellowship. We thank two anonymous reviewers whose comments on an earlier version of the paper led to substantial improvement of the paper.


  1. Babu SS, Satheesh SK, Moorthy KK (2002) Aerosol radiative forcing due to enhanced black carbon at an urban site in India. Geophys Res Lett 29(18):1880. doi: 10.1029/2002GL015826 Google Scholar
  2. Bhawar RL, Devara PCS (2010) Study of successive contrasting monsoons (2001–2002) in terms of aerosol variability over a tropical station Pune, India. Atmos Chem Phys 10:29–37CrossRefGoogle Scholar
  3. Bollasina M, Nigam S, Lau K-M (2008) Absorbing aerosols and summer monsoon evolution over south Asia: an observational portrayal. J Clim 21:3221–3239CrossRefGoogle Scholar
  4. Chakraborty A, Satheesh SK, Nanjundiah RS, Srinivasan J (2004) Impact of absorbing aerosols on the simulation of climate over the Indian region in an atmospheric general circulation model. Ann Geophys 22:1421–1434CrossRefGoogle Scholar
  5. Charlson RJ, Schwartz SE, Hales JM, Cess RD, Coakley JA, Hansen JE, Hofmann DJ (1992) Climate forcing by anthropogenic aerosols. Science 255:423–430CrossRefGoogle Scholar
  6. Chattopadhyay R, Sahai AK, Goswami BN (2008) Objective identification of nonlinear convectively coupled phases of monsoon intraseasonal oscillation: implications for prediction. J Atmos Sci 65:1549–1569CrossRefGoogle Scholar
  7. Collier JC, Zhang GJ (2009) Aerosol direct forcing of the summer Indian monsoon as simulated by the NCAR CAM3. Clim Dyn 32:313–332. doi: 10.1007/s00382-008-0464-9 CrossRefGoogle Scholar
  8. d’Almedia GA, Koepke P, Shettle EP (1991) Atmospheric aerosols: global climatology and radiative characteristics. Deepak Publishing, HamptonGoogle Scholar
  9. Devara PCS, Raj PE, Pandithurai G, Dani KK, Maheskumar RS (2003) Relationship between lidar-based observations of aerosol content and monsoon precipitation over a tropical station, Pune, India. Meteorol Appl 10:253–262CrossRefGoogle Scholar
  10. Goswami BN (2005) South Asian monsoon. In: Lau WKM, Waliser DE (eds) Intraseasonal variability in the atmosphere-ocean climate system, chap 2, pp 19–61Google Scholar
  11. Goswami BN, Ajaya Mohan RS (2001) Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J Clim 14:1180–1198CrossRefGoogle Scholar
  12. Goswami BN, Xavier PK (2003) Potential predictability and extended range prediction of Indian summer monsoon breaks. Geophys Res Lett 30(18):1966. doi: 10.1029/2003GL017810
  13. Goswami BN, Ajaya Mohan RS, Xavier PK, Sengupta D (2003) Clustering of low pressure systems during the Indian summer monsoon by intraseasonal oscillations. Geophys Res Lett 30(8):1431. doi: 10.1029/2002GL016734 Google Scholar
  14. Gruber A, Kruger AF (1984) The status of the NOAA outgoing longwave radiation dataset. Bull Am Meteorol Soc 65:958–962CrossRefGoogle Scholar
  15. Holton JR (2004) An introduction to dynamic meteorology. Elsevier, USAGoogle Scholar
  16. Hsu NC, Herman JR, Gleason JF, Torres O, Seftor CJ (1999) Satellite detection of smoke aerosols over a snow/ice surface by TOMS. Geophys Res Lett 26:1165–1168. doi: 10.1029/1999GL900155 CrossRefGoogle Scholar
  17. Huffman GJ, Adler RF, Morrissey M, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multi-satellite observations. J Hydrometeorol 2:36–50CrossRefGoogle Scholar
  18. Jai Devi J, Tripathi SN, Gupta T, Singh BN, Gopalakrishnan V (2010) Aerosol radiative impacts over Indian CTCZ region: results from pilot 2008 aircraft experiment. In: Proceedings of Indian Aerosol Science and Technology Association (IASTA-2010), pp 363–364Google Scholar
  19. Jayaraman A (2001) Aerosol radiation cloud interactions over the tropical Indian Ocean prior to the onset of the summer monsoon. Curr Sci 81(11):1437–1445Google Scholar
  20. Jones C, Carvalho LMV, Higgins RW, Waliser DE, Schemm K-KE (2004) A statistical forecast model of tropical intraseasonal convective anomalies. J Clim 17:2078–2095CrossRefGoogle Scholar
  21. Joseph S, Sahai AK, Goswami BN (2009) Eastward propagating MJO during boreal summer and Indian monsoon droughts. Clim Dyn 32:1139–1153. doi: 10.1007/s00382-008-0412-8 CrossRefGoogle Scholar
  22. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  23. Koepke P, Hess M, Schult I, Shettle EP (1997) Global aerosol dataset. Max-Plank-Institut für Meteorologie Report 243, 44 ppGoogle Scholar
  24. Lau K-M, Kim K-M (2006) Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys Res Lett 33:L21810. doi: 10.1029/2006GL027546 CrossRefGoogle Scholar
  25. Lau K-M, Kim MK, Kim KM (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dyn 26:855–864CrossRefGoogle Scholar
  26. Maloney ED, Hartmann DL (2000) Modulation of eastern north Pacific hurricanes by the Madden–Julian Oscillation. J Clim 13:1451–1460CrossRefGoogle Scholar
  27. McClatchey RA, Fenn RW, Selby JEA, Volz FE, Garing JS (1972) Optical properties of the atmosphere, 3rd edn. Environ Res Pap 411:108. AFCRL-72-0497Google Scholar
  28. Meehl GA, Arblaster JM, Collins WD (2008) Effects of black carbon aerosols on the Indian monsoon. J Clim 21:2869–2882. doi: 10.1175/2007JCLI1777.1 CrossRefGoogle Scholar
  29. Menon S (2004) Current uncertainties in assessing aerosol effects on climate. Annu Rev Environ Resour 29:1–30. doi: 10.1146/ CrossRefGoogle Scholar
  30. Menon S, Hansen JE, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253. doi: 10.1126/science.1075159 CrossRefGoogle Scholar
  31. Mo KC (2001) Adaptive filtering and prediction of intraseasonal oscillations. Mon Weather Rev 129:802–817CrossRefGoogle Scholar
  32. Pandithurai G, Pinker RT, Takamura T, Devara PCS (2004) Aerosol radiative forcing over a tropical urban site in India. Geophys Res Lett 31:L12107. doi: 10.1029/2004GL019702 CrossRefGoogle Scholar
  33. Pandithurai G, Dipu S, Dani KK, Tiwari S, Bisht DS, Devara PCS, Pinker RT (2008) Aerosol radiative forcing during dust events over New Delhi, India. J Geophys Res 113:D13209. doi: 10.1029/2008JD009804 CrossRefGoogle Scholar
  34. Rahul PRC, Salvekar PS, Devara PCS (2008) Aerosol optical depth variability over Arabian Sea during drought and normal years of Indian monsoon. Geophys Res Lett 35:L22812. doi: 10.1029/2008GL035573 CrossRefGoogle Scholar
  35. Rahul PRC, Salvekar PS, Devara PCS, Sahu BK (2009) An aerosol dipole event over the tropical Indian Ocean during 2006. IEEE Geosci Remote Sens Lett 7:291–295. doi: 10.1109/LGRS2009.203394 CrossRefGoogle Scholar
  36. Rajeevan M, Gadgil S, Bhate J (2010) Active and break spells of the Indian summer monsoon. J Earth Syst Sci 119(3):229–247CrossRefGoogle Scholar
  37. Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227CrossRefGoogle Scholar
  38. Ramanathan V, Ramana MV (2005) Persistent, widespread, and strongly absorbing haze over the Himalayan foothills and the Indo-Gangetic Plains. Pure Appl Geophys 162:1609–1626. doi: 10.1007/s00024-005-2685-8 CrossRefGoogle Scholar
  39. Ramanathan V, Crutzen PJ, Lelieveld J, Mitra AP, Althausen D, Anderson J, Andrea MO, Cantrell W, Cass GR, Chung CE, Clarke AD, Coakley JA, Collins WD, Conant WC, Dulac F, Heintzenberg J, Heymsfield AJ, Holben B, Howell S, Hudson J, Jayaraman A, Kiehl JT, Krishnamurti TN, Lubin D, McFarquhar G, Novakov T, Ogren JA, Podgorny IA, Prather K, Priestley K, Prospero JM, Quinn PK, Rajeev K, Rasch P, Rupert S, Sadourny R, Satheesh SK, Shaw GE, Sheridan P, Valero FPJ (2001) Indian Ocean experiment: an integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J Geophys Res 106(D22):28371–28398CrossRefGoogle Scholar
  40. Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M (2005) Atmospheric brown clouds: impacts on south Asian climate and hydrological cycle. Proc Nat Acad Sci 102(15):5326–5333CrossRefGoogle Scholar
  41. Ravi Kiran V, Rajeevan M, Vijaya Bhaskara Rao S, Prabhakara Rao N (2009) Analysis of variations of cloud and aerosol properties associated with active and break spells of Indian summer monsoon using MODIS data. Geophys Res Lett 36:L09706. doi: 10.1029/2008GL037135 CrossRefGoogle Scholar
  42. Rengarajan R, Sarin MM, Sudheer AK (2007) Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high-altitude sites in North India. J Geophys Res 112:D21307. doi: 10.1029/2006JD008150 CrossRefGoogle Scholar
  43. Ricchiazzi P, Yang S, Gautier C, Sowle D (1998) SBDART: a research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere. Bull Am Meteorol Soc 79:2101–2114CrossRefGoogle Scholar
  44. Rosenfeld D (2000) Suppression of rain and snow by urban and industrial air pollution. Science 287:1793–1796. doi: 10.1126/science.287.5459.1793 CrossRefGoogle Scholar
  45. Tare V, Tripathi SN, Chinnam N, Srivastava AK, Dey S, Manar M, Kanawade VP, Agarwal A, Kishore S, Lal RB, Sharma M (2006) Measurements of atmospheric parameters during Indian Space Research Organization Geosphere Biosphere Program Land Campaign II at a typical location in the Ganga Basin: 2. chemical properties. J Geophys Res 111:D23210. doi: 10.1029/2006JD007279
  46. Tripathi SN, Dey S, Tare V (2005) Aerosol black carbon radiative forcing at an industrial city in northern India. Geophys Res Lett 32:L08802. doi: 10.1029/2005GL022515 CrossRefGoogle Scholar
  47. Tripathi SN, Tare V, Chinnam N, Srivastava AK, Dey S, Agarwal A, Kishore S, Lal RB, Manar M, Kanawade VP, Chauhan SSS, Sharma M, Reddy RR, Gopal KR, Narasimhulu K, Reddy LSS, Gupta S, Lal S (2006) Measurements of atmospheric parameters during Indian Space Research Organization Geosphere Biosphere Program Land Campaign II at a typical location in the Ganga Basin: 1. physical and optical properties. J Geophys Res 111:D23209. doi: 10.1029/2006JD007278
  48. Waliser DE (2006) Predictability of tropical intraseasonal variability. In: Palmer T, Hagedorn R (eds) Predictability of weather and climate. Cambridge University Press, pp 718Google Scholar
  49. Waliser DE, Jones C, Schemm JK, Graham NE (1999) A statistical extended-range tropical forecast model based on the slow evolution of the Madden-Julian Oscillation. J Clim 12:1918–1939CrossRefGoogle Scholar
  50. Waliser DE, Stern W, Schubert S, Lau KM (2003) Dynamic predictability of intraseasonal variability associated with the Asian summer monsoon. Q J R Meteorol Soc 129:2897–2925CrossRefGoogle Scholar
  51. Webster PJ, Hoyos C (2004) Prediction of monsoon rainfall and river discharge variability on 15–30 day time scales. Bull Am Meteorol Soc 85:1745–1765CrossRefGoogle Scholar
  52. Xavier PK, Goswami BN (2007) Analog method for real-time forecasting of summer monsoon subseasonal variability. Mon Weather Rev 135:4149–4160CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • M. G. Manoj
    • 1
    Email author
  • P. C. S. Devara
    • 1
  • P. D. Safai
    • 1
  • B. N. Goswami
    • 1
  1. 1.Indian Institute of Tropical MeteorologyPashan, PuneIndia

Personalised recommendations