Climate Dynamics

, Volume 38, Issue 5–6, pp 877–896

Can oceanic reanalyses be used to assess recent anthropogenic changes and low-frequency internal variability of upper ocean temperature?

  • L. Corre
  • L. Terray
  • M. Balmaseda
  • A. Ribes
  • A. Weaver
Original Paper

Abstract

A multivariate analysis of the upper ocean thermal structure is used to examine the recent long-term changes and decadal variability in the upper ocean heat content as represented by model-based ocean reanalyses and a model-independent objective analysis. The three variables used are the mean temperature above the 14°C isotherm, its depth and a fixed depth mean temperature (250 m mean temperature). The mean temperature above the 14°C isotherm is a convenient, albeit simple, way to isolate thermodynamical changes by filtering out dynamical changes related to thermocline vertical displacements. The global upper ocean observations and reanalyses exhibit very similar warming trends (0.045°C per decade) over the period 1965–2005, superimposed with marked decadal variability in the 1970s and 1980s. The spatial patterns of the regression between indices (representative of anthropogenic changes and known modes of internal decadal variability), and the three variables associated with the ocean heat content are used as fingerprint to separate out the different contributions. The choice of variables provides information about the local heat absorption, vertical distribution and horizontal redistribution of heat, this latter being suggestive of changes in ocean circulation. The discrepancy between the objective analysis and the reanalyses, as well as the spread among the different reanalyses, are used as a simple estimate of ocean state uncertainties. Two robust findings result from this analysis: (1) the signature of anthropogenic changes is qualitatively different from those of the internal decadal variability associated to the Pacific Interdecadal Oscillation and the Atlantic Meridional Oscillation, and (2) the anthropogenic changes in ocean heat content do not only consist of local heat absorption, but are likely related with changes in the ocean circulation, with a clear shallowing of the tropical thermocline in the Pacific and Indian oceans.

Keywords

Anthropogenic climate change Internal variability Oceanic reanalyses Observations Upper ocean temperature 

References

  1. AchutaRao K, Ishii M, Santer B, Gleckler P, Taylor K, Barnett T, Pierce D, Stouffer R, Wigley T (2007) Simulated and observed variability in ocean temperature and heat content. Proc Natl Acad Sci 104:10768–10773CrossRefGoogle Scholar
  2. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167CrossRefGoogle Scholar
  3. Balmaseda M, Anderson D, Vidard A (2007) Impact of argo on analyses of the global ocean. Geophys Res Lett 34:L16605. doi:10.1029/2007GL030452 CrossRefGoogle Scholar
  4. Balmaseda M, Anderson D, Molteni F (2008a) Climate variability from the New ECMWF Ocean Reanalysis ORA-S3. Third WCRP international conference on reanalysis. http://wcrp.ipsl.jussieu.fr/Workshops/Reanalysis2008/abstract.html
  5. Balmaseda M, Vidard A, Anderson D (2008b) The ECMWF ocean analysis system ORA-S3. Mon Wea Rev 136:3018–3034CrossRefGoogle Scholar
  6. Banks H, Wood R (2002) Where to look for anthropogenic climate change in the ocean. J Clim 15:879–891CrossRefGoogle Scholar
  7. Barnett T, Pierce D, AchutaRao K, Gleckler P, Santer B, Gregory J, Washington W (2005) Penetration of human-induces warming into the world’s oceans. Sci Agric 309:284–287Google Scholar
  8. Bellucci A, Masina S, Pietro PD, Navarra A (2007) Using temperature–salinity relations in a global ocean implementation of a multivariate data assimilation scheme. Mon Wea Rev 135:3785–3807CrossRefGoogle Scholar
  9. Bindoff N, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Qur CL, Levitus S, Nojiri Y, Shum C, Talley L, Unnikrishnan A (2007) Observations: oceanic climate change and sea level. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  10. Boyer T, Stephens C, Antonov J, Conkright M, Locarnini R, O’Brien T, Garcia H (2002) World Ocean Atlas 2001. In: Levitus (ed) Salinity, NOAA Atlas NESDIS 50, vol 2. U.S. Govt. Print. Off., Washington, DC, 176 ppGoogle Scholar
  11. Carson M, Harrison D (2010) Regional interdecadal variability in bias-corrected ocean temperature data. J Clim 23:2847–2855CrossRefGoogle Scholar
  12. Carton J, Giese B (2008) A reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA). Mon Wea Rev 136:2999–3017CrossRefGoogle Scholar
  13. Carton J, Santorelli A (2008) Global decadal upper-ocean heat content as viewed in nine analyses. J Clim 21:6015–6035CrossRefGoogle Scholar
  14. Church J, White N, Arblaster J (2005) Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content. Nat Biotechnol 438:74–77Google Scholar
  15. Cooper M, Haines K (1996) Data assimilation with water property conservation. J Geophys Res 101(C1):1059–1077CrossRefGoogle Scholar
  16. Daget N, Weaver A, Balmaseda M (2009) Ensemble estimation of background-error variances in a three-dimensional variational data assimilation system for the global ocean. Q J R Meteorol Soc 135:1071–1094CrossRefGoogle Scholar
  17. Davey M, Huddleston M, Ingleby B, Haines K, Le Traon P, Weaver A, Vialard J, Anderson D, Troccoli A, Vidard A, Burgers G, Leeuwenburgh O, Bellucci A, Masina S, Bertino L, Korn P (2006) Multi-model multi-method multi-decadal ocean analyses from the ENACT project. CLIVAR Exch 11:22–25Google Scholar
  18. De Mey P, Benkiran M (2002) A multivariate reduced-order optimal interpolation method and its application to the Mediterranean basin-scale circulation. In: Pinardi N, Woods JD (eds) Ocean forecasting: conceptual basis and applications. Springer, New YorkGoogle Scholar
  19. Delworth T, Ramaswamy V, Stenchikov G (2005) The impact of aerosols on simulated ocean temperature and heat content in the 20th century. Geophys Res Lett 32:L24709. doi:10.1029/2005GL024457 CrossRefGoogle Scholar
  20. Domingues CM, Church JA, White NJ, Gleckler PJ, Wijffels SE, Barker PM, Dunn JR (2008) Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nat Biotechnol 453:1090–1094Google Scholar
  21. Enfield D, Mestas-Nunez A, Trimble P et al (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res Lett 28:2077–2080CrossRefGoogle Scholar
  22. Frankcombe L, Dijkstra H, von der Heydt A (2008) Sub-surface signatures of the Atlantic Multidecadal Oscillation. Geophys Res Lett 35:L19602CrossRefGoogle Scholar
  23. Gouretski V, Koltermann K (2007) How much is the ocean really warming?. Geophys Res Lett 34:L01610. doi:10.1029/2006GL027834 CrossRefGoogle Scholar
  24. Hanawa K, Rual P, Bailey R, Sy A, Szabados M (1995) A new depth–time equation for sippican or tsk t-7, t-6 and t-4 expendable bathythermographs (xbt). Deep Sea Res I 42:1423–1451CrossRefGoogle Scholar
  25. Hegerl G, Zwiers FW, Braconnot P, Gillett N, Luo Y, Orsini JM, Nicholls N, Penner J, Stott P (2007) Understanding and attributing climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  26. Ingleby B, Huddleston M (2007) Quality control of ocean temperature and salinity profiles—historical and real-time data. J. Mar. Syst. 65:158–175CrossRefGoogle Scholar
  27. Ishii M, Kimoto M (2009) Reevaluation of historical ocean heat content variations with time-varying xbt and mbt depth bias. J Oceanogr 65:287–299. doi:10.1007/s10872-009-0027-7 CrossRefGoogle Scholar
  28. Ishii M, Kimoto M, Kachi M (2003) Historical ocean subsurface temperature analysis with error estimates. Mon Wea Rev 131:51–73CrossRefGoogle Scholar
  29. Kerr R (2000) A North Atlantic climate pacemaker for the centuries. Sci Agric 288:1984Google Scholar
  30. Kizu S, Yoritaka H, Hanawa K (2005) A new fall-rate equation for T-5 expendable bathythermograph (XBT) by TSK. J Oceanogr 61:115–121CrossRefGoogle Scholar
  31. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi:10.1029/2005GL024233 CrossRefGoogle Scholar
  32. Knight J, Folland C, Scaife A (2006) Climate impacts of the Atlantic multidecadal oscillation. Geophys Res Lett 33:L17706CrossRefGoogle Scholar
  33. Le Traon P, Nadal F, Ducet N (1998) An improved mapping method of multisatellite altimeter data. J Atmos Ocean Technol 15:522–534CrossRefGoogle Scholar
  34. Levitus S, Antonov J, Boyer T (2005) Warming of the world ocean, 1955–2003. Geophys Res Lett 32:L02604. doi:10.1029/2004GL021592 CrossRefGoogle Scholar
  35. Levitus S, Antonov J, Boyer T, Locarnini R, Garcia H, Mishonov AV (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys Res Lett 36:L07608. doi:10.1029/2008GL037155 CrossRefGoogle Scholar
  36. Lyman J, Good S, Gouretski V, Ishii M, Johnson G, Palmer M, Smith D, Willis J (2010) Robust warming of the global upper ocean. Nat Biotechnol 465:334–337Google Scholar
  37. Madec G, Delecluse P, Imbard M, Levy C (1998) OPA 8.1 Ocean General Circulation Model reference manual. Notes du pôle modélisation, Institut Pierre Simon Laplace(IPSL), FranceGoogle Scholar
  38. Mann M, Emanuel K (2006) Atlantic hurricane trends linked to climate change. Eos 87:233–244CrossRefGoogle Scholar
  39. Mantua N, Hare S, Zhang Y, Wallace J, Francis R (1997) A pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079CrossRefGoogle Scholar
  40. Marsh R, Josey S, De Cuevas B, Redbourn L, Quartly G (2008) Mechanisms for recent warming of the North Atlantic: Insights gained with an eddy-permitting model. J Geophys Res 113:C04031. doi:0148-0227/08/2007JC004096 CrossRefGoogle Scholar
  41. Meehl G, Hu A, Santer B (2009) The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. J Clim 22:780–792. doi:10.1175/2008JCLI2552.1 CrossRefGoogle Scholar
  42. Murphy J, Collins M, Doblas-Reyes F, Palmer T (2009) Development of ensemble prediction systems volume ENSEMBLE: climate change and its impacts: summary of research and results from the ENSEMBLE project. In: van der Linden P, Mitchell JFB (eds) Met Office Hadley Centre. FitzRoy Road, Exeter EX1 3PB, UK, 160 ppGoogle Scholar
  43. Palmer M, Antonov J, Barker P, Bindoff N, Boyer T, Carson M, Domingues C, Gille S, Gleckler P, Good S et al (2010) Future observations for monitoring global ocean heat content. Proc OceanObs 9:21–25Google Scholar
  44. Palmer M, Good S, Haines K, Rayner N, Stott P (2009) A new perspective on warming of the global ocean. Geophys Res Lett 36:L20709. doi:10.1029/2009GL039491 CrossRefGoogle Scholar
  45. Palmer M, Haines K (2009) Estimating oceanic heat content change using isotherms. J Clim 22:4953–4969CrossRefGoogle Scholar
  46. Palmer M, Haines K, Tett S, Ansell T (2007) Isolating the signal of ocean global warming. Geophys Res Lett 34:L23,610CrossRefGoogle Scholar
  47. Parker D, Folland C, Scaife A, Knight J, Colman A, Baines P, Dong B (2007) Decadal to multidecadal variability and the climate change background. J Geophys Res 112:D18115. doi:10.1029/2007JD008411 CrossRefGoogle Scholar
  48. Power S, Casey T, Folland C, Colman A, Mehta V (1999) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324CrossRefGoogle Scholar
  49. Rayner N, Brohan P, Parker D, Folland C, Kennedy J, Vanicek M, Ansell T, Tett S (2006) Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 dataset. J Clim 19:446–469CrossRefGoogle Scholar
  50. Reynolds R, Rayner N, Smith T, Stokes D, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625CrossRefGoogle Scholar
  51. Ribes A, Azaïs J, Planton S (2009) A method for regional climate change detection using smooth temporal patterns. Clim Dyn 1–16. doi:10.1007/s00382-009-0670-0
  52. Smith R, Dukowicz J, Malone R (1992) Parallel ocean general circulation modeling. Phys D 60:38–61CrossRefGoogle Scholar
  53. Stammer D (2006) Report of the 1st CLIVAR workshop on ocean reanalysis, 8–10 November 2004, Boulder USA. ICPO Publication Series 93 WCRP Informal Publication 9/2006Google Scholar
  54. Stephens C, Antonov J, Boyer T, Conkright M, Locarnini R, O’Brien T, Garcia H (2002) World Ocean Atlas 2001, vol 1: Temperature. In: Levitus S (ed) NOAA Atlas NESDIS 49. U.S. Government Printing Office, Washington, DCGoogle Scholar
  55. Sutton R, Hodson D (2005) Atlantic Ocean forcing of North American and European summer climate. Sci Agric 309:115Google Scholar
  56. Thadathil P, Saran A, Gopalakrishna V, Vethamony P, Araligidad N, Bailey R (2002) Xbt fall rate in waters of extrem temperature: a case study in the antarctic ocean. J Atmos Ocean Technol 19:391–396CrossRefGoogle Scholar
  57. Ting M, Kushnir Y, Seager R, Li C (2009) Forced and internal twentieth-century SST Trends in the North Atlantic. J Clim 22:1469–1481CrossRefGoogle Scholar
  58. Trenberth K, Shea D (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33:L12704CrossRefGoogle Scholar
  59. Troccoli A, Källberg P (2004) Precipitation correction in the ERA-40 reanalysis. ERA-40 Project Report Series. 13Google Scholar
  60. Uppala S et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012Google Scholar
  61. Vecchi G, Soden B, Wittenberg A, Held I, Leetmaa A, Harrison M (2006) Weakening of tropical pacific atmospheric circulation due to anthropogenic forcing. Nat Biotechnol 441:73–76. doi:10.1038/nature04744 Google Scholar
  62. Vidard A, Balmaseda M, Anderson D (2009) Assimilation of altimeter data in the ecmwf ocean analysis system 3. Mon Wea Rev 137:1393–1408CrossRefGoogle Scholar
  63. Wijffels S, Willis J, Domingues C, Baker P, White N, Cronell A, Ridgway K, Church J (2008) Changing expendable bathythermograph fall-rates and their impact on estimates of thermosteric sea level rise. J Clim 21:5657–5672CrossRefGoogle Scholar
  64. Wolff J, Maier-Reimer E, Legutke S (1997) The hambourg ocean primitive equation model. Technical report 18 German Climate Computer Center (DKRZ)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • L. Corre
    • 1
  • L. Terray
    • 1
  • M. Balmaseda
    • 2
  • A. Ribes
    • 3
  • A. Weaver
    • 1
  1. 1.Cerfacs-CNRSToulouseFrance
  2. 2.E.C.M.W.FReadingUK
  3. 3.CNRM-GAME, Météo France-CNRSToulouseFrance

Personalised recommendations