Climate Dynamics

, Volume 38, Issue 1–2, pp 391–409 | Cite as

High-resolution precipitation and temperature downscaling for glacier models

  • Alexander H. Jarosch
  • Faron S. Anslow
  • Garry K. C. Clarke
Article

Abstract

The spatial resolution gap between global or regional climate models and the requirements for local impact studies motivates the need for climate downscaling. For impact studies that involve glacier modelling, the sparsity or complete absence of climate monitoring activities within the regions of interest presents a substantial additional challenge. Downscaling methods for this application must be independent of climate observations and cannot rely on tuning to station data. We present new, computationally-efficient methods for downscaling precipitation and temperature to the high spatial resolutions required to force mountain glacier models. Our precipitation downscaling is based on an existing linear theory for orographic precipitation, which we modify for large study regions by including moist air tracking. Temperature is downscaled using an interpolation scheme that reconstructs the vertical temperature structure to estimate surface temperatures from upper air data. Both methods are able to produce output on km to sub-km spatial resolution, yet do not require tuning to station measurements. By comparing our downscaled precipitation (1 km resolution) and temperature (200 m resolution) fields to station measurements in southern British Columbia, we evaluate their performance regionally and through the annual cycle. Precipitation is improved by as much as 30% (median relative error) over the input reanalysis data and temperature is reconstructed with a mean bias of 0.5°C at locations with high vertical relief. Both methods perform best in mountainous terrain, where glaciers tend to be concentrated.

Keywords

High resolution downscaling Precipitation Temperature Glacier modelling British Columbia 

Notes

Acknowledgments

We thank C. Reuten, V. Radić, and B. Ainslie for their constructive discussions and valuable criticism. H. Björnsson, P. Crochet, and T. Jóhannesson generously provided preprints of unpublished material. Joe Shea provided glacier station data. Further we thank the three anonymous reviewers for their valuable comments. Financial support for this project was provided through the Polar Climate Stability Network and the Western Canadian Cryospheric Network, both funded by the Canadian Foundation for Climate and Atmospheric Sciences, and by the Natural Sciences and Engineering Research Council of Canada.

References

  1. Anslow FS, Hostetler S, Bidlake WR, Clark PU (2008) Distributed energy balance modeling of South Cascade Glacier, Washington and assessment of model uncertainty. J Geophys Res 113:F02,019. doi: 10.1029/2007JF000850 CrossRefGoogle Scholar
  2. Arnold NS, Rees WG (2009) Effects of digital elevation model spatial resolution on distributed calculations of solar radiation loading on a High Arctic glacier. J Glaciol 55:973–984CrossRefGoogle Scholar
  3. Arnold NS, Willis I, Sharp MJ, Richards KS, Lawson WJ (1996) A distributed surface energy-balance model for a small valley glacier. I. Development and testing for Haut Glacier d’Arolla, Valais, Switzerland. J Glaciol 42:77–89Google Scholar
  4. Arnold NS, Rees WG, Hodson AJ, Kohler J (2006) Topographic controls on the surface energy balance of a high Arctic valley glacier. J Geophys Res Earth Surf 111(F2):F02,011. doi: 10.1029/2005JF000426 CrossRefGoogle Scholar
  5. Barstad I, Smith RB (2005) Evaluation of an orographic precipitation model. J Hydrometeorol 6:85–99CrossRefGoogle Scholar
  6. Barstad I, Grabowski WW, Smolarkiewicz PK (2007) Characteristics of large-scale orographic precipitation: Evaluation of linear model in idealized problems. J Hydrol 340(1-2):78–90CrossRefGoogle Scholar
  7. Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323(5911):240–244. doi: 10.1126/science.1164363 CrossRefGoogle Scholar
  8. Bukovsky MS, Karoly DJ (2007) A brief evaluation of precipitation from the North American Regional Reanalysis. J Hydrometeorol 8(4):837–846CrossRefGoogle Scholar
  9. Cogley JG (2009) A more complete version of the World Glacier Inventory. Ann Glaciol 50(53):32–38CrossRefGoogle Scholar
  10. Crochet P, Jóhannesson T, Jonsson T, Sigurðsson O, Björnsson H, Pálsson F, Barstad I (2007) Estimating the spatial distribution of precipitation in Iceland using a linear model of orographic precipitation. J Hydrometeorol 8(6):1285–1306CrossRefGoogle Scholar
  11. Daly C, Neilson RP, Phillips DL (1994) A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J Appl Meteorol 33:140–158CrossRefGoogle Scholar
  12. Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjörnsdottir AE, Jouzel J, Bond G (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364(6434):218–220CrossRefGoogle Scholar
  13. Davis A, Marshak A, Wiscombe W, Cahalan R (1996) Scale invariance of liquid water distributions in marine stratocumulus. 1. Spectral properties and stationarity issues. J Atmos Sci 53:1538–1558CrossRefGoogle Scholar
  14. Durand Y, Brun E, Merindol L, Guyomarch G, Lesaffre B, Martin E (1993) A meteorological estimation of relevant parameters for snow models. Ann Glaciol 18:65–71Google Scholar
  15. Escher-Vetter H (1985) Energy balance calculations for the ablation period 1982 at Vernagtferner, Oetztal Alps. Ann Glaciol 6:158–160Google Scholar
  16. Gerbaux M, Genthon C, Etchvers P, Vincent C, Dedieu J (2005) Surface mass balance of glaciers in the French Alps: distributed modeling and sensitivity to climate change. J Glaciol 51:561–572CrossRefGoogle Scholar
  17. Greuell W, Knap WH, Smeets PC (1997) Elevational changes in meteorological variables along a midlatitude glacier during summer. J Geophys Res 102:25941–25954CrossRefGoogle Scholar
  18. Hamann A, Wang T (2005) Models for climatic normals for genecology and climate change studies in British Columbia. Agric For Meteorol 128:211–221CrossRefGoogle Scholar
  19. Harris D, Menabde M, Seed A, Austin G (1996) Multifractal characterization of rain fields with a strong orographic influence. J Geophys Res Atmos 101:26405–26414Google Scholar
  20. Harris D, Foufoula-Georgiou E, Droegemeier KK, Levit JJ (2001) Multiscale statistical properties of a high-resolution precipitation forecast. J Hydrometeorol 2(4):406–418CrossRefGoogle Scholar
  21. Heymsfield AJ, Van Zadelhoff GJ, Donovan DP, Fabry F, Hogan RJ, Illingworth AJ (2007) Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds. Part II. Evaluation and parameterizations of ensemble ice particle sedimentation velocities. J Atmos Sci 64(4):1068–1088. doi: 10.1175/JAS3900.1 CrossRefGoogle Scholar
  22. Hock R (1999) A distributed temperature-index ice- and snowmelt model including potential direct solar radiation. J Glaciol 45:101–111Google Scholar
  23. Hock R, Noetzli C (1997) melt and discharge modelling of Storglaciären, Sweden. Ann Glaciol 24:211–216Google Scholar
  24. Hock R, de Woul M, Radić V, Dyurgerov M (2009) Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophys Res Lett 36:L07,501. doi: 10.1029/2008GL037020 CrossRefGoogle Scholar
  25. Hopkinson C, Young GJ (1998) The effect of glacier wastage on the flow of the Bow River at Banff, Alberta 1951–1993. Hydrol Process 12:1745–1762CrossRefGoogle Scholar
  26. Huss M, Bauder A, Funk M, Hock R (2008) Determination of the seasonal mass balance of four Alpine glaciers since 1865. J Geophys Res 113. doi: 10.1029/2007JF000803
  27. Huss M, Hock R, Bauder A, Funk M (2010) 100-year mass changes in the Swiss Alps linked to the Atlantic Multidecadal Oscillation. Geophys Res Lett 37Google Scholar
  28. Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4. http://srtm.csi.cgiar.org
  29. Jóhannesson T, Sigurðsson O, Laumann T, Kennett M (1995) Degree-day glacier mass-balance modelling with applications to glaciers in Iceland, Norway, and Greenland. J Glaciol 41:345–358Google Scholar
  30. Jóhannesson T, Aðalgeirsdóttir G, Björnsson H, Crochet P, Elíasson EB, Guðmundsson S, Jónsdóttir JF, Ólafsson H, Pálsson F, Rögnvaldsson O, Sigurðsson O, Snorrason A, Blöndal Sveinsson OG, Thorsteinsson T (2007) Effect of climate change on hydrology and hydro-resources in Iceland. Report OS-2007/11, National Energy Authority, ReykjavíkGoogle Scholar
  31. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471CrossRefGoogle Scholar
  32. Kaser G, Cogley JG, Dyurgerov MB, Meier MF, Ohmura A (2006) Mass balance of glaciers and ice caps: consensus estimates for 1961–2004. Geophys Res Lett 33. doi: 10.1029/2006GL027511
  33. Kessler MA, Anderson RS, Stock GM (2006) Modeling topographic and climate control of east-west asymmetry in Sierra Nevada glacier length during the Last Glacial Maximum. J Geophys Res 111:F02, 002. doi: 10.1029/2005JF000365 CrossRefGoogle Scholar
  34. Klok EJ, Oerlemans J (2002) Model study of the spatial distribution of the energy and mass balance of Morteratschgletscher, Switzerland. J Glaciol 48:505–518CrossRefGoogle Scholar
  35. Lovejoy S, Schertzer D (1995) Multifractals and rain. In: Kundzewicz AW (ed) New uncertainty concepts in hydrology and water resources. Cambridge Unversity Press, pp 61–103CrossRefGoogle Scholar
  36. Machguth H, Paul F, Hoelzle M, Haeberli W (2006) Distributed glacier mass-balance modelling as an important component of modern multi-level glacier monitoring. Ann Glaciol 43:335–343CrossRefGoogle Scholar
  37. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SBC, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, et al (eds) Climate Change 2007: The Physical Science Basis. Contributions of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Unversity Press, Cambridge, pp 747–845Google Scholar
  38. Meier MF, Dyurgerov MB, Rick UK, O’Neel S, Pfeffer WT, Anderson RS, Anderson SP, Glazovsky AF (2007) Glaciers dominate eustatic sea-level rise in 21st century. Science 317:1064–1067CrossRefGoogle Scholar
  39. Mekis E, Hogg WD (1999) Rehabilitation and analysis of Canadian daily precipitation time series. Atmos Ocean 37(1):53–85CrossRefGoogle Scholar
  40. Mesinger F, DiMego G, Kalnay E, Mitchell K, Shafran PC, Ebisuzaki W, Jovic D, Woollen J, Rogers E, Berbery EH, Ek MB, Fan Y, Grumbine R, Higgins W, Li H, Lin Y, Manikin G, Parrish D, Shi W (2006) North American Regional Reanalysis. Bull Am Meteorol Soc 87(3):343–360CrossRefGoogle Scholar
  41. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712CrossRefGoogle Scholar
  42. Moore RD, Fleming SW, Menounos B, Wheate R, Fountain A, Stahl K, Holm K, Jakob M (2009) Glacier change in western North America: influences on hydrology, geomorphic hazards and water quality. Hydrol Process 23(1):42–61. doi: 10.1002/hyp.7162 Google Scholar
  43. New M, Hulme M, Jones P (2000) Representing twentieth-century space–time climate variability. Part II. development of 1901–96 monthly grids of terrestrial surface climate. J Clim 13:2217–2238CrossRefGoogle Scholar
  44. Oerlemans J (1992) Climate sensitivity of glaciers in southern Norway: application of an energy-balance model to Nigardsbreen, Hellstugubreen and Alfotbreen. J Glaciol 38:223–232Google Scholar
  45. Oerlemans J, Hoogendorn NC (1989) Mass-balance gradients and climatic change. J Glaciol 35:399–405Google Scholar
  46. Oerlemans J, Klok EJ (2002) Energy balance of a glacier surface: analysis of automatic weather station data from the Morteratschgletscher, Switzerland. Arct Antarct Alp Res 34:477–485CrossRefGoogle Scholar
  47. Paul F, Kotlarski S (2010) Forcing a distributed glacier mass balance model with the regional climate model REMO. Part II. Downscaling strategy and results for two Swiss Glaciers. J Clim 23:1607–1620CrossRefGoogle Scholar
  48. Paul F, Escher-Vetter H, Machguth H (2009) Comparison of mass balances for Vernagtferner, Oetzal Alps, as obtained from direct measurements and distributed modeling. Ann Glaciol 50:169–177CrossRefGoogle Scholar
  49. Pfeffer WT, Harper JT, O’Neel S (2008) Constraints on glacier contributions to 21st-century sea-level rise. Science 321:1340–1343. doi: 10.1126/science.1159099 CrossRefGoogle Scholar
  50. Plummer MA, Phillips FM (2003) A 2-d numerical model of snow/ice energy balance and ice flow for paleoclimatic interpretation of glacial geomorphic features. Quat Sci Rev 22:1389– 1406. doi: 10.1016/S0277-3791(03)00081-7 CrossRefGoogle Scholar
  51. Radić V, Hock R (2010) Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J Geophys Res 115(F01010). doi: 10.1029/2009JF001373
  52. Raper SBC, Braithwaite RJ (2006) Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature 439:311–313. doi: 10.1038/nature04448 CrossRefGoogle Scholar
  53. Rasmussen LA, Conway H (2001) Estimating South Cascade Glacier (Washington, U.S.A.) mass balance from a distant radiosonde and comparison with Blue Glacier. J Glaciol 47:579–588CrossRefGoogle Scholar
  54. Rasmussen LA, Conway HB (2003) Using upper-air conditions to estimate South Cascade Glacier (Washington, U.S.A.) summer balance. J Glaciol 46:456–462CrossRefGoogle Scholar
  55. Reuter HI, Nelson A, Jarvis A (2007) An evaluation of void filling interpolation methods for SRTM data. Int J Geogr Inf Sci 21:983–1008CrossRefGoogle Scholar
  56. Schuler TV, Crochet P, Hock R, Jackson M, Barstad I, Johannesson T (2008) Distribution of snow accumulation on the Svartisen ice cap, Norway, assessed by a model of orographic precipitation. Hydrol Process 22(19, Special Issue SI):3998–4008. doi: 10.1002/hyp.7073 CrossRefGoogle Scholar
  57. Shea JM, Moore RD, Stahl K (2009) Derivation of melt factors from glacier mass-balance records in western Canada. J Glaciol 55:123–130CrossRefGoogle Scholar
  58. Simmons AJ, Gibson JK (2000) The ERA-40 project plan. ERA-40 Project Report Series 1, European Center for Medium-Range Weather Forecasting, Reading, UKGoogle Scholar
  59. Sinclair MR (1994) A diagnostic model for estimating orographic precipitation. J Appl Meteorol 33(10):1163–1175CrossRefGoogle Scholar
  60. Smith RB, Barstad I (2004) A linear theory of orographic precipitation. J Atmos Sci 61:1377–1391CrossRefGoogle Scholar
  61. Smith RB, Evans JP (2007) Orographic precipitation and water vapor fractionation over the Southern Andes. J Hydrometeorol 8:3–19CrossRefGoogle Scholar
  62. Smith RB, Jiang QF, Fearon MG, Tabary P, Dorninger M, Doyle JD, Benoit R (2003) Orographic precipitation and air mass transformation: an Alpine example. Quart J R Meteorol Soc 129(588):433–454CrossRefGoogle Scholar
  63. Smith RB, Barstad I, Bonneau L (2005) Orographic precipitation and Oregon’s climate transition. J Atmos Sci 62(1):177–191CrossRefGoogle Scholar
  64. Vincent LA, Gullett DW (1999) Canadian historical and homogeneous temperature datasets for climate change analyses. Int J Climatol 19:1375–1388CrossRefGoogle Scholar
  65. Wallace JM, Hobbs PV (1977) Atmospheric science. Academic Press, San DiegoGoogle Scholar
  66. Wang T, Hamann A, Spittlehouse DL, Aitken SN (2006) Development of scale-free climate data for Western Canada for use in resource management. Int J Climatol 26(3):383–397CrossRefGoogle Scholar
  67. Wendland WM, Bryson RA (1981) Northern Hemisphere airstream regions. Mon Weather Rev 109:255–270CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Alexander H. Jarosch
    • 1
  • Faron S. Anslow
    • 1
  • Garry K. C. Clarke
    • 1
  1. 1.Department of Earth and Ocean SciencesThe University of British ColumbiaVancouverCanada

Personalised recommendations