Climate Dynamics

, Volume 37, Issue 3–4, pp 455–471 | Cite as

ECMWF seasonal forecast system 3 and its prediction of sea surface temperature

  • Timothy N. Stockdale
  • David L. T. Anderson
  • Magdalena A. Balmaseda
  • Francisco Doblas-Reyes
  • Laura Ferranti
  • Kristian Mogensen
  • Timothy N. Palmer
  • Franco Molteni
  • Frederic Vitart
Article

Abstract

The latest operational version of the ECMWF seasonal forecasting system is described. It shows noticeably improved skill for sea surface temperature (SST) prediction compared with previous versions, particularly with respect to El Nino related variability. Substantial skill is shown for lead times up to 1 year, although at this range the spread in the ensemble forecast implies a loss of predictability large enough to account for most of the forecast error variance, suggesting only moderate scope for improving long range El Nino forecasts. At shorter ranges, particularly 3–6 months, skill is still substantially below the model-estimated predictability limit. SST forecast skill is higher for more recent periods than earlier ones. Analysis shows that although various factors can affect scores in particular periods, the improvement from 1994 onwards seems to be robust, and is most plausibly due to improvements in the observing system made at that time. The improvement in forecast skill is most evident for 3-month forecasts starting in February, where predictions of NINO3.4 SST from 1994 to present have been almost without fault. It is argued that in situations where the impact of model error is small, the value of improved observational data can be seen most clearly. Significant skill is also shown in the equatorial Indian Ocean, although predictive skill in parts of the tropical Atlantic are relatively poor. SST forecast errors can be especially high in the Southern Ocean.

Notes

Acknowledgments

The improvements in the atmospheric model used in S3 are due to dedicated work by many individuals at ECMWF.

References

  1. Anderson D, Stockdale T, Balmaseda M, Ferranti L, Vitart F, Molteni F, Doblas-Reyes F, Mogenson K, Vidard A (2007) Development of the ECMWF seasonal forecast System 3. ECMWF Technical Memoranda 503Google Scholar
  2. Balmaseda M, Anderson D (2009) Impact of initialization strategies and observations on seasonal forecast skill. Geophys Res Lett 36:L01701. doi: 10.1029/2008GL035561 CrossRefGoogle Scholar
  3. Balmaseda MA, Dee D, Vidard A, Anderson DLT (2005) A multivariate treatment of bias for sequential data assimilation: application to the tropical oceans. Q J Roy Meteorol Soc 133:167–179CrossRefGoogle Scholar
  4. Balmaseda MA, Vidard A, Anderson D (2008) The ECMWF ORA-S3 ocean analysis system. Mon Wea Rev 136:3018–3034Google Scholar
  5. Balmaseda MA, Ferranti L, Molteni F, Palmer TN (2010) Impact of 2007 and 2008 Arctic ice anomalies on the atmospheric circulation: implications for long-range predictions. Q J Roy Meteor Soc 136:1655–1664. doi: 10.1002/qj.661 Google Scholar
  6. Buizza R, Miller M, Palmer TN (1999) Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Q J Roy Meteor Soc 125:1908–2887CrossRefGoogle Scholar
  7. Cane MA, Zebiak SE, Dolan SC (1986) Experimental forecasts of El Nino. Nature 321:827–832CrossRefGoogle Scholar
  8. Doblas-Reyes FJ, Hagedorn R, Palmer TN, Morcrette J-J (2006) Impact of increasing greenhouse gas concentrations in seasonal ensemble forecasts. Geophys Res Lett 33:L07708. doi: 10.1029/2005GL025061 CrossRefGoogle Scholar
  9. Hurrell J, Meehl GA, Bader D, Delworth TL, Kirtman B, Wielicki B (2009) A unified modeling approach to climate system prediction. Bull Am Meteorol Soc 90:1819–1832CrossRefGoogle Scholar
  10. Jin EK, Kinter JL III, Wang B, Park C-K, Kang I-S, Kirtman BP, Kug J-S, Kumar A, Luo J-J, Schemm J, Shukla J, Yamagata T (2008) Current status of ENSO prediction skill in coupled ocean-atmosphere models. Clim Dyn 31:647–664. doi: 10.1007/s00382-008-0397-3 CrossRefGoogle Scholar
  11. Luo J-J, Behera S, Shingu S, Yamagata T (2005) Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J Clim 18:4474–4497CrossRefGoogle Scholar
  12. Luo J-J, Masson S, Behera SK, Yamagata T (2008) Extended ENSO predictions using a fully coupled ocean-atmosphere model. J Clim 21:84–93CrossRefGoogle Scholar
  13. McPhaden MJ (2003) Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys Res Lett 30:1480. doi: 10.1029/2003GL016872 Google Scholar
  14. Meehl GA, Arblaster JM, Branstator GW, van Loon H (2008) A coupled air-sea response mechanism to solar forcing in the Pacific region. J Clim 21:2883–2897CrossRefGoogle Scholar
  15. Palmer TN, Alessandri A, Andersen U, Cantelaube P, Davey M, Délécluse P, Déqué M, Díez E, Doblas-Reyes FJ, Feddersen H, Graham R, Gualdi S, Guérémy J-F, Hagedorn R, Hoshen M, Keenlyside N, Latif M, Lazar A, Maisonnave E, Marletto V, Morse AP, Orfila B, Rogel P, Terres J-M, Thomson MC (2004) Development of a European multi-model ensemble system for seasonal to inter-annual prediction (DEMETER). Bull Am Meteorol Soc 85:853–872CrossRefGoogle Scholar
  16. Palmer TN, Doblas-Reyes FJ, Weisheimer A, Rodwell MJ (2008) Toward seamless prediction: calibration of climate change projections using seasonal forecasts. Bull Am Meteor Soc 89:459–470CrossRefGoogle Scholar
  17. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  18. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625CrossRefGoogle Scholar
  19. Saha S, Nadiga S, Thiaw C, Wang J, Wang W, Zhang Q, Van den Dool HM, Pan HL, Moorthi S, Behringer D, Stokes D, Peña M, Lord S, White G, Ebisuzaki W, Peng P, Xie P (2006) The NCEP climate forecast system. J Clim 19:3483–3517CrossRefGoogle Scholar
  20. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363Google Scholar
  21. Stockdale TN (1997) Coupled ocean atmosphere forecasts in the presence of climate drift. Mon Wea Rev 125:809–818CrossRefGoogle Scholar
  22. Stockdale TN, Anderson DLT, Alves JO, Balmaseda MA (1998) Global seasonal rainfall forecasts with a coupled ocean atmosphere model. Nature 392:370–373CrossRefGoogle Scholar
  23. Stockdale TN, Balmaseda MA, Vidard A (2006) Tropical Atlantic SST prediction with coupled ocean-atmosphere GCMs. J Clim 19:6047–6061CrossRefGoogle Scholar
  24. Tompkins AM, Feudale L (2010) Seasonal ensemble predictions of West African monsoon precipitation in the ECMWF System 3 with a focus on the AMMA special observing period in 2006. Weather Forecast 25:768–788CrossRefGoogle Scholar
  25. van Oldenburgh GJ, Balmaseda M, Ferranti L, Stockdale T, Anderson D (2005) Did the ECMWF seasonal forecast model outperform statistical ENSO forecast models over the last 15 years? J Clim 18:3240–3249CrossRefGoogle Scholar
  26. Vialard J, Vitart F, Balmaseda M, Stockdale T, Anderson D (2005) An ensemble generation method for seasonal forecasting with an ocean-atmosphere coupled model. Mon Weather Rev 133:441–453CrossRefGoogle Scholar
  27. Wang B, Lee J-Y, Kang I-S, Shukla J, Park C-K, Kumar A. Schemm J, Cocke S, Kug J.-S, Luo J-J, Zhou T, Wang B, Fu X, Yun W-T, Alves O, Jin EK, Kinter J. Kirtman B, Krishnamurti T, Lau NC, Lau W, Liu P, Pegion P, Rosati T, Schubert S, Stern W, Suarez M, Yamagata T (2009) Advance and prospectus of seasonal prediction: assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Clim Dyn. doi:  10.1007/s00382-008-0460-0
  28. WCRP (2005) The world climate research programme strategic framework 2005–2015: coordinated observation and prediction of the earth system (COPES). WCRP-123, WMO/TD-No. 1291, 65Google Scholar
  29. Webster PJ, Moore A, Loschnigg J, Leban M (1999) Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401:356–360CrossRefGoogle Scholar
  30. Weisheimer A (2005) SST and wind stess perturbations for seasonal and annual simulations. Available from: http://www.ecmwf.int/research/EU_projects/ENSEMBLES/exp_setup/ini_perturb/index.html
  31. Weisheimer A, Doblas-Reyes FJ, Palmer TN, Alessandri A, Arribas A, Déqué M, Keenlyside N, MacVean M, Navarra A, Rogel P (2009) ENSEMBLES: a new multi-model ensemble for seasonal-to-annual predictions—skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. Geophys Res Lett 36:L21711. doi: 10.1029/2009GL040896 CrossRefGoogle Scholar
  32. Zwiers FW, von Storch H (1995) Taking serial correlation into account in tests of the mean. J Clim 8:336–351CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Timothy N. Stockdale
    • 1
  • David L. T. Anderson
    • 1
  • Magdalena A. Balmaseda
    • 1
  • Francisco Doblas-Reyes
    • 1
    • 2
  • Laura Ferranti
    • 1
  • Kristian Mogensen
    • 1
  • Timothy N. Palmer
    • 1
  • Franco Molteni
    • 1
  • Frederic Vitart
    • 1
  1. 1.ECMWFReadingUK
  2. 2.Institut Catala de Ciencies del Clima (IC3)BarcelonaSpain

Personalised recommendations