Advertisement

Climate Dynamics

, Volume 38, Issue 3–4, pp 475–493 | Cite as

A gridded monthly upper-air data set from 1918 to 1957

  • Stefan Brönnimann
  • Thomas Griesser
  • Alexander Stickler
Article

Abstract

Significant efforts have been devoted in recent years towards extending observation-based three-dimensional atmospheric data sets back in time. Such data sets form an important basis for a better understanding of the climate system. Here we present a new monthly three-dimensional global data set that is based on historical upper-air data and surface data. We use statistical reconstruction techniques, calibrated using ERA-40 data, to obtain gridded data from the numerous, but scattered and heterogeneous historical upper-air observations. In contrast to previous work, in which we used hemispheric principal components on both the predictor and the predictand side to reconstruct spatially complete fields back to 1880, we restrict the procedure to places and times where upper-air observations are available. Each grid column (consisting of four variables at six levels) is then reconstructed independently using only predictor variables in the vicinity (i.e., only local stationarity is required rather than stationary large-scale patterns). The product, termed REC2, is a gridded, global monthly data set of geopotential height, temperature, and u and v wind from 850 to 100 hPa back to 1918. The data set is sparse (i.e., many grid cells are empty), but provides an alternative to large-scale reconstructions as it allows for non-stationary teleconnections. We show the results of several validation experiments, compare our new data set with a number of existing data sets, and demonstrate that it is suitable for analysing large-scale climate variability on interannual time-scales.

Keywords

Root Mean Square Error Total Ozone Lower Stratosphere Calibration Period Interannual Time Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Swiss National Science Foundation, Project “Past climate variability from an upper-level perspective”. We also gratefully acknowledge the support of the Swiss National Centre of Competence in Research on Climate (NCCR-Climate), funded by the Swiss National Science Foundation. We wish to thank Gil Compo, Jeff Whitaker and Prashant Sardeshmukh (University of Colorado and NOAA) for providing 20CR data, ECMWF for providing the ERA-40 data and the Hadley Centre of the UK MetOffice for providing the HadCRUT3v and the HadSLP2 data sets.

References

  1. Allan R, Ansell T (2006) A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J Clim 19:5816–5842CrossRefGoogle Scholar
  2. Bengtsson L, Hagemann S, Hodges KI (2004) Can climate trends be calculated from reanalysis data? J Geophys Res 109:D11111. doi: 10.1029/2004JD004536 CrossRefGoogle Scholar
  3. Bromwich D, Wang S (2005) Evaluation of the NCEP-NCAR and ECMWF 15-and 40-yr reanalyses using rawindsonde data from two independent Arctic field experiments. Mon Wea Rev 133:3562–3578CrossRefGoogle Scholar
  4. Brönnimann S (2003) A historical upper-air data set for the 1939–1944 period. Int J Climatol 23:769–791CrossRefGoogle Scholar
  5. Brönnimann S, Luterbacher J (2004) Reconstructing Northern Hemisphere upper-level fields during World War II. Clim Dyn 22:499–510CrossRefGoogle Scholar
  6. Brönnimann S, Luterbacher J, Schmutz C, Wanner H, Staehelin J (2000) Variability of total ozone at Arosa, Switzerland, since 1931 related to atmospheric circulation indices. Geophys Res Lett 27:2213–2216CrossRefGoogle Scholar
  7. Brönnimann S, Cain JC, Staehelin J, Farmer SFG (2003) Total ozone observations prior to the IGY. II. Data and quality. Q J Roy Meteorol Soc 129:2819–2843CrossRefGoogle Scholar
  8. Brönnimann S, Luterbacher J, Staehelin J, Svendby TM, Hansen G, Svenøe T (2004) Extreme climate of the global troposphere and stratosphere in 1940–42 related to El Nino. Nature 431:971–974CrossRefGoogle Scholar
  9. Brönnimann S, Stickler A, Griesser T, Ewen T, Grant AN, Fischer AM, Schraner M, Peter T, Rozanov E, Ross T (2009a) Exceptional atmospheric circulation during the “Dust Bowl”. Geophys Res Lett 36:L08802. doi: 10.1029/2009GL037612 CrossRefGoogle Scholar
  10. Brönnimann S, Stickler A, Griesser T, Fischer AM, Grant A, Ewen T, Zhou T, Schraner M, Rozanov E, Peter T (2009b) Variability of large-scale atmospheric circulation indices for the Northern Hemisphere during the past 100 years. Meteorol Z 18:379–396CrossRefGoogle Scholar
  11. Compo GP et al (2010) The twentieth century reanalysis project. Q J R Meteorol Soc (submitted)Google Scholar
  12. Cook ER, Briffa KR, Jones PD (1994) Spatial regression methods in dendroclimatology—a review and comparison of two techniques. Int J Climatol 14:379–401CrossRefGoogle Scholar
  13. Cook BI, Seager R, Miller RL (2010) Atmospheric circulation anomalies during two persistent North American droughts: 1932–1939 and 1948–1957. Clim Dyn (online first). doi: 10.1007/s00382-010-0807-1
  14. Durre I, Vose RS, Wuertz DB (2006) Overview of the Integrated Global Radiosonde Archive. J Clim 19:53–68CrossRefGoogle Scholar
  15. Emanuel K (2010) Tropical cyclone activity downscaled from NOAA-CIRES reanalysis, 1908–1958. J Adv Model Earth Syst 2:1. doi: 10.3894/JAMES.2010.2.1 CrossRefGoogle Scholar
  16. Ewen T, Grant A, Brönnimann S (2008a) A monthly upper-air data set for North America back to 1922 from the Monthly Weather Review. Mon Wea Rev 136:1792–1805CrossRefGoogle Scholar
  17. Ewen T, Brönnimann S, Annis JL (2008b) An extended Pacific North American index from upper air historical data back to 1922. J Clim 21:1295–1308CrossRefGoogle Scholar
  18. Fischer AM, Shindell DT, Winter B, Bourqui MS, Faluvegi G, Rozanov E, Schraner M, Brönnimann S (2008a) Stratospheric winter climate response to ENSO in three chemistry-climate models. Geophys Res Lett 35:L13819. doi: 10.1029/2008GL034289 CrossRefGoogle Scholar
  19. Fischer AM et al (2008b) Interannual-to-decadal variability of the stratosphere during the 20th century: ensemble simulations with a Chemistry-Climate Model. Atmos Chem Phys 8:14371–14418CrossRefGoogle Scholar
  20. Free M, Seidel DJ, Angell J, Lanzante JK, Durre I, Peterson TC (2005) Radiosonde atmospheric temperature products for assessing climate (RATPAC): a new data set of large-area anomaly time series. J Geophys Res 110:D22101. doi: 10.1029/2005JD006169 CrossRefGoogle Scholar
  21. Giese BS, Compo GP, Slowey NC, Sardeshmukh PD, Carton JA, Ray S, Whitaker JS (2010) The 1918/1919 El Niño. Bull Am Meteorol Soc 91:177–183. doi: 10.1175/2009BAMS2903 CrossRefGoogle Scholar
  22. Grant A, Brönnimann S, Haimberger L (2008) Recent Arctic warming vertical structure contested. Nature 455:E2–E3. doi: 10.1038/nature07257 CrossRefGoogle Scholar
  23. Grant A, Brönnimann S, Ewen T, Nagurny A (2009a) A new look at radiosonde data prior to 1958. J Clim 22:3232–3247CrossRefGoogle Scholar
  24. Grant AN, Brönnimann S, Ewen T, Griesser T, Stickler A (2009b) The early twentieth century warm period in the European Arctic. Met Z 18:425–432CrossRefGoogle Scholar
  25. Griesser T, Brönnimann S, Grant A, Ewen T, Stickler A, Comeaux J (2010) Reconstruction of global monthly upper-level temperature and geopotential height fields back to 1880. J Clim (ealy online release). doi: 10.1175/2010JCLI3056.1
  26. Haimberger L (2007) Homogenization of radiosonde temperature time series using innovation statistics. J Clim 20:1377–1403CrossRefGoogle Scholar
  27. Haimberger L, Tavolato C, Sperka S (2008) Towards the elimination of warm bias in historic radiosonde records—some new results from a comprehensive intercomparison of upper air data. J Clim 21:4587–4606CrossRefGoogle Scholar
  28. Hansen G, Svenøe T (2005) Multilinear regression analysis of the 65-year Tromsø total ozone series. J Geophys Res 110:D10103. doi: 10.1029/2004JD005387 CrossRefGoogle Scholar
  29. Hansen J, Ruedy R, Glascoe J, Sato M (1999) GISS analysis of surface temperature change. J Geophys Res 104:30997–31022CrossRefGoogle Scholar
  30. Harnik N, Chang EKM (2003) Storm track variations as seen in radiosonde observations and reanalysis data. J Clim 16:480–495CrossRefGoogle Scholar
  31. Jones PD, Wigley TML, Briffa KR (1987) Monthly mean pressure reconstructions for Europe (back to 1780) and North America (to 1858). U.S. Dept. of Energy Carbon Dioxide Research Division, Technical Report TRO37, 99 ppGoogle Scholar
  32. Kistler R et al (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267CrossRefGoogle Scholar
  33. Luterbacher J, Xoplaki E, Dietrich D, Rickli R, Jacobeit J, Beck C, Gyalistras D, Schmutz C, Wanner H (2002) Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim Dyn 18:545–561Google Scholar
  34. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–1503. doi: 10.1126/science.1093877 CrossRefGoogle Scholar
  35. Santer BD et al (2004) Identification of anthropogenic climate change using a second-generation reanalysis. J Geophys Res 109:D21104. doi: 10.1029/2004JD005075 CrossRefGoogle Scholar
  36. Scaife AA et al (2009) The CLIVAR C20C Project: selected 20th century climate events. Clim Dyn 33:603–614CrossRefGoogle Scholar
  37. Schmutz C, Gyalistras D, Luterbacher J, Wanner H (2001) Reconstruction of monthly 700, 500 and 300 hPa GPH fields in the European and Eastern North Atlantic region for the period 1901–1947. Clim Res 18:181–193CrossRefGoogle Scholar
  38. Sherwood SC, Meyer CL, Allen RJ (2008) Robust tropospheric warming revealed by iteratively homogenized radiosonde data. J Clim 21:5336–5350CrossRefGoogle Scholar
  39. Simmons AJ, Jones PD, da Costa Bechtold V, Beljaars ACM, Kallberg PW, Saarinen S, Uppala SM, Viterbo P, Wedi N (2004) Comparison of trends and low-frequency variability in CRU, ERA-40 and NCEP/NCAR analyses of surface air temperature. J Geophys Res 109:D24115. doi: 10.1029/2004JD005306 CrossRefGoogle Scholar
  40. Staehelin J, Renaud A, Bader J, McPeters R, Viatte P, Hoegger B, Buignon V, Giroud M, Schill H (1998) Total ozone series at Arosa (Switzerland): homogenisation and data comparison. J Geophys Res 103:5827–5841CrossRefGoogle Scholar
  41. Stickler A et al (2010) The comprehensive historical upper air network (CHUAN). Bull Am Meteorol Soc 91:741–751. doi: 10.1175/2009BAMS2852.1 CrossRefGoogle Scholar
  42. Thorne PW, Parker DE, Tett SFB, Jones PD, McCarthy M, Coleman H, Brohan P (2005) Revisiting radiosonde upper-air temperatures from 1958 to 2002. J Geophys Res 110:D18105. doi: 10.1029/2004JD005753 CrossRefGoogle Scholar
  43. Trenberth KE, Stepaniak DP, Hurrell JW (2001) Quality of reanalyses in the tropics. J Clim 14:1499–1510CrossRefGoogle Scholar
  44. Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  45. Vogler C, Brönnimann S, Staehelin J, Griffin REM (2007) The Dobson total ozone series of Oxford: re-evaluation and applications. J Geophys Res 112:D20116. doi: 10.1029/2007JD008894 CrossRefGoogle Scholar
  46. Wood KR, Overland JE (2010) Early 20th century Arctic warming in retrospect. Int J Climatol 30:1269–1279. doi: 10.1002/joc.1973 Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Stefan Brönnimann
    • 1
    • 2
  • Thomas Griesser
    • 1
  • Alexander Stickler
    • 1
  1. 1.Institute for Atmospheric and Climate ScienceETH ZurichZurichSwitzerland
  2. 2.Oeschger Centre for Climate Change Research and Institute of GeographyUniversity of BernBernSwitzerland

Personalised recommendations