Climate Dynamics

, Volume 36, Issue 11–12, pp 2147–2158

How well do coupled models replicate ocean energetics relevant to ENSO?

  • Jaclyn N. Brown
  • Alexey V. Fedorov
  • Eric Guilyardi


Accurate replication of the processes associated with the energetics of the tropical ocean is necessary if coupled GCMs are to simulate the physics of ENSO correctly, including the transfer of energy from the winds to the ocean thermocline and energy dissipation during the ENSO cycle. Here, we analyze ocean energetics in coupled GCMs in terms of two integral parameters describing net energy loss in the system using the approach recently proposed by Brown and Fedorov (J Clim 23:1563–1580, 2010a) and Fedorov (J Clim 20:1108–1117, 2007). These parameters are (1) the efficiency γ of the conversion of wind power into the buoyancy power that controls the rate of change of the available potential energy (APE) in the ocean and (2) the e-folding rate α that characterizes the damping of APE by turbulent diffusion and other processes. Estimating these two parameters for coupled models reveals potential deficiencies (and large differences) in how state-of-the-art coupled GCMs reproduce the ocean energetics as compared to ocean-only models and data assimilating models. The majority of the coupled models we analyzed show a lower efficiency (values of γ in the range of 10–50% versus 50–60% for ocean-only simulations or reanalysis) and a relatively strong energy damping (values of α−1 in the range 0.4–1 years versus 0.9–1.2 years). These differences in the model energetics appear to reflect differences in the simulated thermal structure of the tropical ocean, the structure of ocean equatorial currents, and deficiencies in the way coupled models simulate ENSO.


ENSO Energetics Thermocline Coupled modeling 


  1. AchutaRao K, Sperber KR (2006) ENSO simulation in coupled ocean-atmosphere models: are the current models better? Clim Dyn 27:1–15CrossRefGoogle Scholar
  2. Barnier B, Madec G, Penduff J-MM, Treguier AM, Le Sommer J, Beckmann A, Biastoch A, Boning C, Dengg J, Derval C, Durand E, Gulev S, Remy E, Talandier C, Theetten S, Maltrud M, McClean JL, De Cuevas B (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn 56(5–6):543–567Google Scholar
  3. Behringer DW (2007) The global ocean data assimilation system at NCEP, 11th symposium on integrated observing and assimilation systems for atmosphere, oceans, and land surface, AMS 87th annual meeting. Henry B. Gonzales Convention Center, San Antonio, TexasGoogle Scholar
  4. Boccaletti G, Pacanowski RC, Philander SG, Fedorov AV (2004) The thermal structure of the upper ocean. J Phys Oceanogr 34:888–902CrossRefGoogle Scholar
  5. Brierley C, Fedorov AV, Liu Z, Herbert T, Lawrence K, LaRiviere J (2009) Greatly expanded tropical warm pool and weaker Hadley circulation in the early Pliocene. Science 323:1714–1717CrossRefGoogle Scholar
  6. Brown JN, Fedorov AV (2008) Mean energy balance in the tropical Pacific Ocean. J Mar Res 66(1):1–23CrossRefGoogle Scholar
  7. Brown JN, Fedorov AV (2010a) How much energy is transferred from the winds to the thermocline on ENSO timescales? J Clim 23:1563–1580CrossRefGoogle Scholar
  8. Brown J, Fedorov AV (2010b) Estimating the diapycnal transport contribution to warm water volume variations in the tropical Pacific ocean. J Clim 23:221–237CrossRefGoogle Scholar
  9. Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006) The community climate system model version 3 (CCSM3). J Clim 19(11):2122–2143CrossRefGoogle Scholar
  10. Collins M, S-I An, Cai W, Ganachaud A, Guilyardi E, Jin F-F, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A (2010) The impact of global warming on the tropical Pacific and El Niño. Nat Geosci 3:391–397CrossRefGoogle Scholar
  11. Dawe JT, Thompson L (2006) Effect of ocean surface currents on wind stress, heat flux, and wind power input to the ocean. Geophys Res Lett 33(9)Google Scholar
  12. Delworth TL et al (2006) GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Clim 19(5):643–674CrossRefGoogle Scholar
  13. Dewitte B, Cibot C, Périgaud C, An S-I, Terray L (2007) Interaction between near-annual and ENSO modes in a CGCM simulation: role of equatorial background mean state. J Clim 20:1035–1052Google Scholar
  14. Fedorov AV (2007) Net energy dissipation rates in the tropical ocean and ENSO dynamics. J Clim 20:1108–1117CrossRefGoogle Scholar
  15. Fedorov AV (2010) Ocean response to wind variations, warm water volume, and simple models of ENSO in the low-frequency approximation. J Clim 23:3855–3873CrossRefGoogle Scholar
  16. Fedorov AV, Brown JN (2009) Equatorial waves. In: Steele J (ed) Encyclopedia of ocean sciences, 2nd edn. Academic Press, DublinGoogle Scholar
  17. Fedorov AV, Philander SG (2000) Is El Niño changing? Science 288:1997–2002Google Scholar
  18. Fedorov AV, Philander SGH (2001) A stability analysis of the tropical ocean-atmosphere interactions: bridging measurements and theory for El Niño. J Clim 14:3086–3101Google Scholar
  19. Fedorov AV, Harper SL, Philander SG, Winter B, Wittenberg AT (2003) How predictable is El Niño? Bull Amer Meteor Soc 84:911–919CrossRefGoogle Scholar
  20. Fedorov AV, Pacanowski RC, Philander SGH, Boccaletti G (2004) The effect of salinity on the wind-driven circulation and the thermal structure of the upper ocean. J Phys Oceanogr 34:1949–1966CrossRefGoogle Scholar
  21. Fedorov AV, Brierley C, Emanuel K (2010) Tropical cyclones and permanent El Nino in the early Pliocene epoch. Nature 463:1066–1070CrossRefGoogle Scholar
  22. Gleckler P, Taylor KE, Dutriaux C (2008) Performance metrics for climate models. J Geophys Res 113:D06104CrossRefGoogle Scholar
  23. Goddard L, Philander SG (2000) The energetics of El Nino and La Nina. J Clim 13:1496–1516CrossRefGoogle Scholar
  24. Gordon HB, Rotstayn LD, McGregor JL, Dix MR, Kowalczyk EA, O’Farrell SP, Waterman LJ, Hirst AC, Wilson SG, Collier MA, Watterson IG, Elliott TI (2002) The CSIRO Mk3 climate system model [electronic publication]. Aspendale: CSIRO Atmospheric Research (CSIRO Atmospheric Research technical paper; no. 60), pp 130Google Scholar
  25. Griffies SM, Gnanadesikan A, Dixon KW, Dunne JP, Gerdes R, Harrison MJ, Rosati A, Russell J, Samuels B, Spelman MJ, Winton M, Zhang R (2005) Formulation of an ocean model for global climate simulations. Ocean Sci 1:45–79CrossRefGoogle Scholar
  26. Gualdi S, Scoccimarro E, Navarra A (2008) Changes in tropical cyclone activity due to global warming: results from a high-resolution coupled general circulation model. J Clim 21:5204–5228CrossRefGoogle Scholar
  27. Guilyardi E (2006) El Nino-mean state-seasonal cycle interactions in a multi-model ensemble. Clim Dyn 26:329–348CrossRefGoogle Scholar
  28. Guilyardi E, Wittenberg A, Fedorov AV et al (2009a) Understanding El Niño in ocean-atmosphere general circulation models. Bull Amer Meteorol Soc 90:325–340CrossRefGoogle Scholar
  29. Guilyardi E, Braconnot P, Li T, Jin F-F, Kim P, Kolasinski M, Musat I (2009b) Mechanisms for ENSO suppression in a coupled GCM with a modified atmospheric convection scheme. J Clim 22:5698–5718CrossRefGoogle Scholar
  30. Jin F-F, Kim ST, Bejarano L (2006) A coupled-stability index for ENSO. Geophys Res Lett 33:L23708CrossRefGoogle Scholar
  31. Johns TC, Durman CF, Banks HT, Roberts MJ, McLaren AJ, Ridley JK, Senior CA, Williams KD, Jones A, Rickard GJ, Cusack S, Ingram WJ, Crucifix M, Sexton DMH, Joshi MM, Dong B-W, Spencer H, Hill RSR, Gregory JM, Keen AB, Pardaens AK, Lowe JA, Bodas-Salcedo A, Stark S, Searl Y (2006) The new Hadley centre climate model HadGEM1: evaluation of coupled simulations. J Clim 19(7):1327–1353CrossRefGoogle Scholar
  32. K-1 model developers (2004) K-1 coupled model (MIROC) description, K-1 technical report, 1. In: Hasumi H, Emori S (eds) Center for climate system research. University of Tokyo, pp 34Google Scholar
  33. Kim ST, Jin F-F (2010) An ENSO stability analysis. Part II: results from the twentieth and twenty-first century simulations of the CMIP3 models. Clim Dyn. doi:10.1007/s00382-010-0872-5
  34. Kim S-J, Flato GM, Boer GJ, McFarlane NA (2002) A coupled climate model simulation of the last glacial maximum, part 1: transient multi-decadal response. Clim Dyn 19:515–537CrossRefGoogle Scholar
  35. Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and model with a nonlocal boundary-layer parameterization. Rev Geophys 32:363–403Google Scholar
  36. Lloyd J, Guilyardi E, Weller H, Slingo J (2009) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Atmos Sci Lett 10:170–176Google Scholar
  37. Marti O, Braconnot P, Bellier J, Benshila R, Bony S, Brockmann P, Cadulle P, Caubel A, Denvil S, Dufresne JL, Fairhead L, Filiberti M-A, Fichefet T, Friedlingstein P, Grandpeix J-Y, Hourdin F, Krinner G, L′evy C, Musat I, Talandier C. IPSL Global Climate Modeling Group 2005. The new IPSL climate system model: IPSL-CM4cGoogle Scholar
  38. McPhaden MJ (1999) Genesis and evolution of the 1997–98 El Niño. Science 283:950–954CrossRefGoogle Scholar
  39. McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314:1740–1745CrossRefGoogle Scholar
  40. Meehl GA, Gent PR, Arblaster JM, Otto-Bliesner BL, Brady EC, Craig A (2001) Factors that affect the amplitude of El Niño in global coupled climate models. Clim Dyn 17:515CrossRefGoogle Scholar
  41. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394CrossRefGoogle Scholar
  42. Neale RB, Richter JH, Jochum M (2008) The impact of convection on ENSO: from a delayed oscillator to a series of events. J Clim 21:5904–5924CrossRefGoogle Scholar
  43. Oort AH, Ascher SC, Levitus S, Peixoto JH (1989) New estimates of the available potential energy in the world ocean. J Geophys Res 94:3187–3200CrossRefGoogle Scholar
  44. Philip S, van Oldenborgh GJ (2006) Shifts in ENSO coupling processes under global warming. Geophys Res Lett 33:L11704CrossRefGoogle Scholar
  45. Philip S, van Oldenborgh GJ (2009) Significant atmospheric nonlinearities in the ENSO cycle. J Clim 22:4014–4028CrossRefGoogle Scholar
  46. Philip S, van Oldenborgh GJ, Collins M (2009) The role of atmosphere and ocean physical processes in ENSO. Ocean Sci Discuss (submitted)Google Scholar
  47. Roberts WGH, Battisti DS (2010) A new tool for evaluating the physics of coupled atmosphere-ocean variability in nature and in general circulation models. Clim Dyn. doi:10.1007/s00382-010-0762-x
  48. Salas-Mélia D (2002) A global coupled sea ice-ocean model. Ocean Model 4:137–172CrossRefGoogle Scholar
  49. Schmidt GA, Ruedy R, Hansen JE, Aleinov I, Bell N, Bauer M, Bauer S, Cairns B, Canuto V, Cheng Y, Del Genio A, Faluvegi G, Friend AD, Hall TM, Hu Y, Kelley M, Kiang NY, Koch D, Lacis AA, Lerner J, Lo KK, Miller RL, Nazarenko L, Oinas V, Perlwitz Ja, Perlwitz Ju, Rind D, Romanou A, Russell GL, Sato M, Shindell DT, Stone PH, Sun S, Tausnev N, Thresher D, Yao M-S (2006) Present day atmospheric simulations using GISS ModelE: comparison to in-situ, satellite and reanalysis data. J Clim 19:153–192Google Scholar
  50. Sun D, Yu Y, Zhang T (2008) Tropical water vapor and cloud feedbacks in climate models: a further assessment using coupled simulations. J Clim 22:1287–1304CrossRefGoogle Scholar
  51. Thompson CJ, Battisti DS (2000) A linear stochastic dynamical model of ENSO, part I: development. J Clim 13:2818–2883CrossRefGoogle Scholar
  52. Thompson CJ, Battisti DS (2001) A linear stochastic dynamical model of ENSO. Part II: analysis. J Clim 14:445–466CrossRefGoogle Scholar
  53. Van Oldenborgh GJ, Philip SY, Collins M (2005) El Niño in a changing climate: a multi-model study. Ocean Sci 1:81–95. Sref:1812-0792/os/2005-1-81Google Scholar
  54. Wang C, Xie SP, Carton JA (2004) Earth’s climate. The ocean-atmosphere interaction, vol 147. Geophysical Monograph Series, American Geophysical UnionGoogle Scholar
  55. Wunsch C, Heimbach P (2007) Practical global ocean state estimation. Phys D 230(1–2):197–208CrossRefGoogle Scholar
  56. Zhai XM, Greatbatch RJ (2007) Wind work in a model of the northwest Atlantic Ocean. Geophys Res Lett 34(4)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jaclyn N. Brown
    • 1
    • 2
  • Alexey V. Fedorov
    • 1
  • Eric Guilyardi
    • 3
    • 4
  1. 1.Department of Geology and GeophysicsYale UniversityNew HavenUSA
  2. 2.CSIRO Wealth from Oceans National Research FlagshipHobartAustralia
  4. 4.NCAS, ClimateUniversity of ReadingReadingUK

Personalised recommendations