Climate Dynamics

, Volume 37, Issue 7–8, pp 1427–1442 | Cite as

Greenland’s contribution to global sea-level rise by the end of the 21st century

  • Rune G. GraversenEmail author
  • Sybren Drijfhout
  • Wilco Hazeleger
  • Roderik van de Wal
  • Richard Bintanja
  • Michiel Helsen


The Greenland ice sheet holds enough water to raise the global sea level with ∼7 m. Over the last few decades, observations manifest a substantial increase of the mass loss of this ice sheet. Both enhanced melting and increase of the dynamical discharge, associated with calving at the outlet-glacier fronts, are contributing to the mass imbalance. Using a dynamical and thermodynamical ice-sheet model, and taking into account speed up of outlet glaciers, we estimate Greenland’s contribution to the 21st-century global sea-level rise and the uncertainty of this estimate. Boundary fields of temperature and precipitation extracted from coupled climate-model projections used for the IPCC Fourth Assessment Report, are applied to the ice-sheet model. We implement a simple parameterization for increased flow of outlet glaciers, which decreases the bias of the modeled present-day surface height. It also allows for taking into account the observed recent increase in dynamical discharge, and it can be used for future projections associated with outlet-glacier speed up. Greenland contributes 0–17 cm to global sea-level rise by the end of the 21st century. This range includes the uncertainties in climate-model projections, the uncertainty associated with scenarios of greenhouse-gas emissions, as well as the uncertainties in future outlet-glacier discharge. In addition, the range takes into account the uncertainty of the ice-sheet model and its boundary fields.


Sea-level-rise projection Greenland ice sheet Outlet glacier Ice-sheet modeling 



The authors are thankful to Wouter Greuell, Frank Selten, Caroline Katsman, Bert Wouters as well as two anonymous reviewers for useful comments on the manuscript. The authors would like to acknowledge Janneke Ettema for providing RACMO precipitation data, Michiel van den Broeke for RACMO mass-balance data, and Bo Vinther for providing the GRIP ice-core data. R. Graversen is funded by Ministry of Transport, Public Works and Water Management, The Netherlands, within the project Abrupt Climate Scenarios.


  1. Bueler E, Brown J (2009) Shallow shelf approximation as a “sliding law” in a thermodynamically coupled ice sheet model. J Geophys Res 114. doi: 10.1029/2008JF001179
  2. Bamber JL, Layberry RL, Gogineni SP (2001) A new ice thickness and bed data set for the Greenland ice sheet 1. Measurement, data reduction, and errors. J Geophys Res 106:33,773–33,780Google Scholar
  3. Bintanja R, van de Wal RSW, Oerlemans J (2002) Global ice volume variations through the last glacial cycle simulated by a 3-D ice-dynamical model. Quat Int 95–96:11–23Google Scholar
  4. Bintanja R, van de Wal RSW, Oerlemans J (2005) Modelled atmospheric temperatures and global sea levels over the past million years. Nature 437:125–128CrossRefGoogle Scholar
  5. Bintanja R, van de Wal RSW (2008) North American ice-sheet dynamics and the onset of 100,000-year glacial cycles. Nature 454:869–872CrossRefGoogle Scholar
  6. Box JE, Bromwich DH, Vennhuis BA, Bai, L-S, Stroeve JC, Rogers JC, Steffen K, Haran T, Wang S-H (2006) Greenland Ice Sheet Surface Mass Balance Variability (1988–2004) from Calibrated Polar MM5 Output. J Clim 19:2783–2800CrossRefGoogle Scholar
  7. Bougamont M, Bamber JL, Ridley JF, Gladstone RM, Greuell W, Hanna E, Payne AJ, Rutt I (2007) Impact of model physics on estimating the surface mass balance of the Greenland ice sheet. Geophys Res Lett. doi: 10.1029/2007/GL030700
  8. Clausen HB, Gundestrup NS, Johnsen SJ, Bindschadler R, Zwally J (1988) Glaciological investigations in the Crête area, Central Greenland. A search for a new deep-drilling site. Ann Glaciol 10:10–15Google Scholar
  9. Ettema J, van den Broeke MR, van Meijgaard E, van de Berg WJ, Bamber JL, Box JE, Bales RC (2009) Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophys Res Lett. doi: 10.1029/2009GL038110
  10. Franco B, Fettweis X, Erpicum M, Nicolay S (2010) Present and future climate of the Greenland ice sheet according to the IPCC AR4 models. Clim Dyn. doi: 10.1007/s00382-010-0779-1
  11. Gleckler PJ, Taylor KE, and Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113. doi: 10.1029/2007JD008972
  12. Gregory JM, Huybrechts P (2006) Ice-sheet contributions to future sea-level change. Phil Trans R Soc A 364:1709–1731CrossRefGoogle Scholar
  13. Hanna E, Huybrechts P, Steffen K, Cappelen J, Huff R, Shuman C, Irvine-Fynn T, Wise S, Griffiths M (2008) Increased runoff from melt from the Greenland ice sheet: a response to global warming. J Clim 21:331–341CrossRefGoogle Scholar
  14. Hindmarsh RCA (2006) The role of membrane-like stresses in determining the stability and sensitivity of the Antarctic ice sheets: back pressure and grounding line motion. Phil Trans R Soc A 364:1733–1767CrossRefGoogle Scholar
  15. Holland DM, Thomas RH, de Young B, Ribergaard MH, Lyberth B (2008) Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat Geosci 1:659–664CrossRefGoogle Scholar
  16. Howat IM, Joughin I, Fahnestock M, Smith BE, Scambos TA (2008) Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000–06: ice dynamic and coupling to climate. J Glaciol 54:646–660CrossRefGoogle Scholar
  17. Huybrechts P (1990) A 3-D model for the Antarctic ice sheet: a sensitivity study on the glacial-interglacial contrast. Clim Dyn 5:79–92Google Scholar
  18. Huybrechts P, de Wolde J (1999) The dynamical response of the Greenland and Antarctic ice sheets to multiple-century climate warming. J Clim 12:2169–2188CrossRefGoogle Scholar
  19. Imbrie JD, McIntire A, Alan C (1989) Ocean response to orbital forcing in the late Quaternary: observational and experimental strategies. In: Berger A, Schneider SH, Duplessy JC (eds) Climate and geosciences, a challenge for science and society in the 21st century. Kluwer, Boston, pp 121–164Google Scholar
  20. Johnsen SJ, Dahl-Jensen D, Dansgaard W, Gundestrup N (1995) Greenland paleotemperatures derived from GRIP bore hole temperature and ice core isotope profiles. Tellus 47B:624–629Google Scholar
  21. Joughin I, Abdalati W, and Fahnestock M (2004) Large fluctuations in speed on Greenland’s Jakobshavn Isbræ glacier. Nature 432:608–610CrossRefGoogle Scholar
  22. Joughin I, Smith BE, Howat IM, Sambos TA (2010) Greenland flow variability from ice-sheet-wide velocity mapping. J Glac 56:415–430CrossRefGoogle Scholar
  23. Katsman CA, Sterl A, Beersma JJ, van den Brink HW, Church JA, Hazeleger W, Kopp RE, Kroon D, Kwadijk J, Lammersen R, Lowe J, Oppenheimer M, Plag H-P, Ridley J, von Storch H, Vaughan DG, Vellinga P, Vermeersen LLA, van de Wal RSW, Weisse R (2010) Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta. Clim Change (Submitted)Google Scholar
  24. Lythe MB, Vaughan DG (2001) BEDMAN: a new ice thickness and subglacial topographic model of Antarctica. J Geophys Res 106:11,335–11,351CrossRefGoogle Scholar
  25. Meehl GA, Stocker TF, Collins WD, Fiedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007a) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the International Panel on Climate Change, Cambridge University Press, Cambridge, New YorkGoogle Scholar
  26. Meehl GA, Covey C, Delworth T, Latif M, McAveney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007b) The WCRP CMIP3 multimodel dataset, a new era in climate change research. Am Meteorol Soc. doi: 10.1175/BAMS-88-9-1383
  27. Mangeney A, Califano F (1998) The shallow ice approximation for anisotropic ice: formulation and limits. J Geophys Res 103:691–705CrossRefGoogle Scholar
  28. Nakićenović N, Swart R (2000) Emission scenarios. Cambridge University Press, UKGoogle Scholar
  29. Ohmura A (1987) New temperature distribution maps for Greenland. Zeitschrift für Gletscherkunde und Glazialgeologie 23:1–45Google Scholar
  30. Paterson WSB (1994) The physics of glaciers, 3rd edn. Butterworth-Heinemann, OxfordGoogle Scholar
  31. Pfeffer WT, Meier MF, Illangasekare TH (1991) Retention of Greenland runoff by refreezing: implication for projected future sea level change. J Geophys Res 96:22,117–22,124CrossRefGoogle Scholar
  32. Reeh N (1991) Parameterization of melt rate and surface temperature on the Greenland ice sheet. Polarforschung 59:113–128Google Scholar
  33. Rignot E, Box JE, Burgess E, Hanna E (2008) Mass balance of the Greenland ice sheet from 1958 to 2007. Geophys Res Lett. doi: 10.1029/2008GL035417
  34. Simmons A, Uppala S, Dee D, Kobayashi S (2006) ERA-Interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsl 110:25–35Google Scholar
  35. Straneo F, Hamilton GS, Sutherland DA, Stearns LA, Davidson F, Hammill MO, Stenson GB, Rosing-Asvid A (2010) Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. Nat Geosci 3:182–186CrossRefGoogle Scholar
  36. Van de Berg J, van de Wal RSW, Milne GA, Oerlemans J (2008) Effect of isostasy on dynamical ice sheet modelling: a case study for Eurasia. J Geophys Res 113. doi: 10.1029/2007JB004994
  37. Van den Broeke M, Bamber J, Ettema J, Rignot E, Schrama E, van de Berg WJ, van Meijgaard E, Velicogna I, Wouters B (2009) Partitioning recent Greenland mass loss. Sci 326:984–986CrossRefGoogle Scholar
  38. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Bechtold V da C, Florino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  39. Walsh JE, Chapman WL, Romanovsky V, Christensen JH, Stendel M (2008) Global Climate Model Performance over Alaska and Greenland. J Clim 21:6156–6174CrossRefGoogle Scholar
  40. Van de Wal RSW (1996) Mass-balance modelling of the Greenland ice sheet: a comparison of an energy-balance and a degree-day model. Ann Glac 23:36–45Google Scholar
  41. Van de Wal RSW (1999a) The importance of thermodynamics for modeling the volume of the Greenland ice sheet. J Geophys Res 104:3887–3898CrossRefGoogle Scholar
  42. Van de Wal RSW (1999b) Processes of buildup and retreat of the Greenland ice sheet. J Geophys Res 104:3899–3906CrossRefGoogle Scholar
  43. Van de Wal RSW, Oerlemans J (1994) An energy balance model for the Greenland ice sheet. Glob Plan Change 9:115–131CrossRefGoogle Scholar
  44. Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. PNAS. doi: 10.1073/pnas0907765106

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Rune G. Graversen
    • 1
    Email author
  • Sybren Drijfhout
    • 2
  • Wilco Hazeleger
    • 2
  • Roderik van de Wal
    • 3
  • Richard Bintanja
    • 2
  • Michiel Helsen
    • 3
  1. 1.Royal Netherlands Meteorological InstituteDe BiltThe Netherlands
  2. 2.Royal Netherlands Meteorological InstituteDe BiltThe Netherlands
  3. 3.Institute for Marine and Atmospheric Research UtrechtUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations