Climate Dynamics

, Volume 37, Issue 5–6, pp 1005–1018 | Cite as

Impact of Greenland and Antarctic ice sheet interactions on climate sensitivity

  • H. GoelzerEmail author
  • P. Huybrechts
  • M. F. Loutre
  • H. Goosse
  • T. Fichefet
  • A. Mouchet


We use the Earth system model of intermediate complexity LOVECLIM to show the effect of coupling interactive ice sheets on the climate sensitivity of the model on a millennial time scale. We compare the response to a 2×CO2 warming scenario between fully coupled model versions including interactive Greenland and Antarctic ice sheet models and model versions with fixed ice sheets. For this purpose an ensemble of different parameter sets have been defined for LOVECLIM, covering a wide range of the model’s sensitivity to greenhouse warming, while still simulating the present-day climate and the climate evolution over the last millennium within observational uncertainties. Additional freshwater fluxes from the melting ice sheets have a mitigating effect on the model’s temperature response, leading to generally lower climate sensitivities of the fully coupled model versions. The mitigation is effectuated by changes in heat exchange within the ocean and at the sea–air interface, driven by freshening of the surface ocean and amplified by sea–ice-related feedbacks. The strength of the effect depends on the response of the ice sheets to the warming and on the model’s climate sensitivity itself. The effect is relatively strong in model versions with higher climate sensitivity due to the relatively large polar amplification of LOVECLIM. With the ensemble approach in this study we cover a wide range of possible model responses.


Ice sheets Climate sensitivity EMIC Ensemble Ice–climate interactions 



We acknowledge support through the Belgian Federal Public Planning Service Science Policy Research Programme on Science for a Sustainable Development under Contract SD/CS/01. H. Goosse is Research Associate with the Fonds National de la Recherche Scientifique (FNRS-Belgium).


  1. Alley R, Clark P, Huybrechts P, Joughin I (2005) Ice sheets and sea-level change. Science 310:456–460CrossRefGoogle Scholar
  2. Beckmann A, Goosse H (2003) A parameterization of ice shelf-ocean interactions for climate models. Ocean Model 5:157–170CrossRefGoogle Scholar
  3. Brovkin V, Ganopolski A, Svirezhev Y (1997) A continuous climate-vegetation classification for use in climate biosphere studies. Ecol Modell 101:251–261CrossRefGoogle Scholar
  4. Bryan K, Lewis L (1979) A water mass model of the world ocean. J Geophys Res 84(C5):2503–2517CrossRefGoogle Scholar
  5. Calov R, Ganopolski A, Claussen M, Petoukhov V, Greve R (2005) Transient simulation of the last glacial inception. Part I: glacial inception as a bifurcation in the climate system. Clim Dyn 24:545–561CrossRefGoogle Scholar
  6. Chou C, Neelin J (1996) Linearization of a long-wave radiation scheme for intermediate tropical atmospheric models. J Geophys Res 101(15):15,129–15,145Google Scholar
  7. Cubasch U, Meehl GA, Boer GJ, Stouffer RJ, Dix M, Noda A, Senior CA, Raper S, Yap KS (2001) Projections of future climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001. The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 881Google Scholar
  8. Driesschaert E, Fichefet T, Goosse H, Huybrechts P, Janssens I, Mouchet A, Munhoven G, Brovkin V, Weber SL (2007) Modeling the influence of Greenland ice sheet melting on the meridional overturning circulation during the next millennia. Geophys Res Lett L10707Google Scholar
  9. Fichefet T, Morales Maqueda M (1997) Sensitivity of a global sea-ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12,609–12,646CrossRefGoogle Scholar
  10. Fichefet T, Poncin C, Goosse H, Huybrechts P, Janssens I, Le Treut H (2003) Implications of changes in freshwater flux from the Greenland ice sheet for the climate of the 21st century. Geophys Res Lett 30:L1911CrossRefGoogle Scholar
  11. Goosse H, Fichefet T (1999) Importance of ice-ocean interactions for the global ocean circulation: a model study. J Geophys Res 104:23,337–23,355Google Scholar
  12. Goosse H, Deleersnijder E, Fichefet T, England M (1999) Sensitivity of a global coupled ocean–sea-ice model to the parameterization of vertical mixing. J Geophys Res 104:13,681–13,695Google Scholar
  13. Goosse H, Selten FM, Haarsma RJ, Opsteegh JD (2001) Decadal variability in high northern latitudes as simulated by an intermediate complexity climate model. Ann Glaciol 33:525–532CrossRefGoogle Scholar
  14. Goosse H, Driesschaert E, Fichefet T, Loutre M-F (2007) Information on the early Holocene climate constrains the summer sea ice projections for the 21st century. Clim Past 3:683–692CrossRefGoogle Scholar
  15. Goosse H, Brovkin V, Fichefet T, Haarsma R, Huybrechts P, Jongma J, Mouchet A, Selten F, Barriat PY, Campin JM, Deleersnijder E, Driesschaert E, Goelzer H, Janssens I, Loutre MF, Morales Maqueda MA, Opsteegh T, Mathieu PP, Munhoven G, Petterson JE, Renssen H, Roche D, Schaeffer M, Tartinville B, Timmermann A, Weber SL (2010) Description of the Earth system model of intermediate complexity LOVECLIM version 1.2. Geosci Model Dev Discuss 3:309–390CrossRefGoogle Scholar
  16. Gregory JM, Huybrechts P (2006) Ice-sheet contributions to future sea-level change. Philos Trans R Soc A 364:1709–1732CrossRefGoogle Scholar
  17. Gregory JM, Stouffer RJ, Raper SCB, Stott PA, Rayner NA (2002) An observationally based estimate of the climate sensitivity. J Clim 15:3117–3121CrossRefGoogle Scholar
  18. Gregory JM, Dixon KW, Stouffer RJ, Weaver AJ, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Sokolov AP, Thorpe RB (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32:L12703CrossRefGoogle Scholar
  19. Haarsma RJ, Selten FM, Opsteegh JD, Lenderink G, Liu Q (1996) ECBILT, a coupled atmosphere ocean sea-ice model for climate predictability studies. KNMI, De Bilt, The Netherlands, 31 pGoogle Scholar
  20. Holland PR, Jenkins A, Holland DM (2008) The response of ice shelf basal melting to variations in ocean temperature. J Clim 21:2558–2572CrossRefGoogle Scholar
  21. Huybrechts P (1990) A 3-D model for the Antarctic ice sheet: a sensitivity study on the glacial–interglacial contrast. Clim Dyn 5:79–92Google Scholar
  22. Huybrechts P (1996) Basal temperature conditions of the Greenland ice sheet during the glacial cycles. Ann Glaciol 23:226–236Google Scholar
  23. Huybrechts P (2002) Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Q Sci Rev 21:203–231CrossRefGoogle Scholar
  24. Huybrechts P, de Wolde J (1999) The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J Clim 12:2169–2188CrossRefGoogle Scholar
  25. Huybrechts P, Janssens I, Poncin C, Fichefet T (2002) The response of the Greenland ice sheet to climate changes in the 21st century by interactive coupling of an AOGCM with a thermomechanical ice sheet model. Ann Glaciol 35:409–415CrossRefGoogle Scholar
  26. Janssens I, Huybrechts P (2000) The treatment of melt water retention in mass-balance parameterizations of the Greenland ice sheet. Ann Glaciol 31:133–140CrossRefGoogle Scholar
  27. Johns TC, Gregory JM, Ingram WJ, Johnson CE, Jones A, Lowe JA, Mitchell JFB, Roberts DL, Sexton DMH, Stevenson DS, Tett SFB, Woodage MJ (2003) Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios. Clim Dyn 20:583–612Google Scholar
  28. Knutti R, Stocker TF, Joos F, Plattner G-K (2002) Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature 416:719–723CrossRefGoogle Scholar
  29. Loutre MF, Mouchet A, Fichefet T, Goosse H, Goelzer H, Huybrechts P (2010) Evaluating climate model performance with various parameter sets using observations over the last centuries. Clim Past Discuss 6:711–765CrossRefGoogle Scholar
  30. Mikolajewicz U, Gröger M, Maier-Reimer E, Schurgers G, Vizcaíno M, Winguth A (2007a) Long-term effects of anthropogenic CO2 emissions simulated with a complex earth system model. Clim Dyn 28:599–633CrossRefGoogle Scholar
  31. Mikolajewicz U, Vizcaíno M, Jungclaus J, Schurgers G (2007b) Effect of ice sheet interactions in anthropogenic climate change simulations. Geophys Res Lett 34:L18706CrossRefGoogle Scholar
  32. Mouchet A, François L (1996) Sensitivity of a global oceanic carbon cycle model to the circulation and to the fate of organic matter: preliminary results. Phys Chem Earth 21:511–516CrossRefGoogle Scholar
  33. Murphy JM (1995) Transient response of the Hadley Centre coupled ocean–atmosphere model to increasing carbon dioxide. Part III: analysis of global-mean response using simple models. J Clim 8:496–514CrossRefGoogle Scholar
  34. Nakashiki N, Kim D-H, Bryan FO, Yoshida Y, Tsumune D, Maruyama K, Kitabata H (2006) Recovery of thermohaline circulation under CO2 stabilization and overshoot scenario. Ocean Model 15:200–217CrossRefGoogle Scholar
  35. Opsteegh J, Haarsma R, Selten F, Kattenberg A (1998) ECBILT: a dynamic alternative to mixed boundary conditions in ocean models. Tellus 50:348–367CrossRefGoogle Scholar
  36. Paterson WSB, Budd WF (1982) Flow parameters for ice sheet modelling. Cold Reg Sci Technol 6:175–177CrossRefGoogle Scholar
  37. Pollard D, DeConto RM (2009) Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458:329–332CrossRefGoogle Scholar
  38. Rahmstorf S (1994) Rapid climate transitions in a coupled ocean-atmosphere model. Nature 372:82–85CrossRefGoogle Scholar
  39. Rahmstorf S, Ganopolski A (1999) Long-term global warming scenarios computed with an efficient coupled climate model. Clim Change 43:353–367CrossRefGoogle Scholar
  40. Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  41. Ridley J, Huybrechts P, Gregory J, Lowe J (2005) Elimination of the Greenland ice sheet in a high CO2 climate. J Clim 18:3409–3427CrossRefGoogle Scholar
  42. Schaeffer M, Selten F, van Dorland R (1998) Linking Image and ECBILT. National Institute for public health and the environment (RIVM), Bilthoven, The Netherlands, Report no 4815008008Google Scholar
  43. Schneider von Deimling T, Held H, Ganopolski A, Rahmstorf S (2006) Climate sensitivity estimated from ensemble simulations of glacial climate. Clim Dyn 27:149–163CrossRefGoogle Scholar
  44. Shine KP, Henderson-Sellers A (1985) The sensitivity of a thermodynamic sea ice model to changes in surface albedo parameterization. J Geophys Res 90(D1):2243–2250CrossRefGoogle Scholar
  45. Stocker TF, Wright DG, Broecker WS (1992) The influence of high-latitude surface forcing on the global thermohaline circulation. Paleoceanography 7(5):529–541CrossRefGoogle Scholar
  46. Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M, Flato GM, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier WR, Robitaille DY, Sokolov A, Vettoretti G, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387CrossRefGoogle Scholar
  47. Swingedouw D, Fichefet T, Huybrechts P, Goosse H, Driesschaert E, Loutre M-F (2008) Antarctic ice-sheet melting provides negative feedbacks on future climate warming. Geophys Res Lett 35:L17705CrossRefGoogle Scholar
  48. Vizcaíno M, Mikolajewicz U, Gröger M, Maier-Reimer E, Schurgers G, Winguth A (2008) Long-term ice sheet-climate interactions under anthropogenic greenhouse forcing simulated with a complex Earth System Model. Clim Dyn 31:665–690CrossRefGoogle Scholar
  49. Vizcaíno M, Mikolajewicz U, Jungclaus J, Schurgers G (2010) Climate modification by future ice sheet changes and consequences for ice sheet mass balance. Clim Dyn 34:301–324CrossRefGoogle Scholar
  50. Warner RC, Budd WF (1998) Modeling the long-term response of the Antarctic ice sheet to global warming. Ann Glaciol 27:161–168Google Scholar
  51. Winguth A, Mikolajewicz U, Gröger M, Maier-Reimer E, Schurgers G, Vizcaíno M (2005) Centennial-scale interactions between the carbon cycle and anthropogenic climate change using a dynamic Earth system model. Geophys Res Lett 32:L23714CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • H. Goelzer
    • 1
    Email author
  • P. Huybrechts
    • 1
  • M. F. Loutre
    • 2
  • H. Goosse
    • 2
  • T. Fichefet
    • 2
  • A. Mouchet
    • 3
  1. 1.Earth System Sciences and Departement GeografieVrije Universiteit BrusselBrusselsBelgium
  2. 2.Georges Lemaître Centre for Earth and Climate Research (TECLIM), Earth and Life InstituteUniversité catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Laboratoire de Physique Atmosphérique et PlanétaireUniversité de LiègeLiègeBelgium

Personalised recommendations